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Abstract—As a powerful promoter of Internet of Underwater
Things (IoUT), unmanned underwater vehicles (UUVs) are widely
used in various IoUT applications such as underwater detection
and data collection. However, the variable marine environment
makes the development and validation of UUV control algorithm
face the challenge of high cost and high risk. In this paper, we
propose IMTVSim, an integrated modular training and verifi-
cation simulator for UUVs that integrates customizable modules
such as underwater detection model, ocean current model, and 3D
underwater scenario, while providing a reinforcement learning
(RL) environment to train UUV intelligence to complete the
difficult task. In addition, we introduce the large language model
to assist the design of reward functions to realize more efficient
RL training in our proposed IMTVSim.

Index Terms—Internet of Underwater Things, unmanned un-
derwater vehicle, simulator, reinforcement learning, large lan-
guage model.

I. INTRODUCTION

As significant drivers of the Internet of Underwater Things
(IoUT), unmanned underwater vehicles (UUVs) are exten-
sively utilized in diverse IoUT applications such as underwater
exploration and data collection. Nonetheless, the intricate and
unpredictable nature of marine environments poses substantial
challenges in terms of high costs and elevated risks for the
development and testing of UUV control algorithms [1], [2].

Simulators are widely regarded as safe and dependable
tools that can generate various test scenarios and amass
substantial test data. This capability enhances the efficiency
and cost-effectiveness of the design and validation process
for robots, contributing to notable successes in both space-
based and terrestrial robotic applications in recent years.
For instance, Mo et al. [4] created Terra, an autonomous
vehicle simulation framework, to facilitate efficient navigation
in intricate environments. Similarly, Dai et al. [5] developed
RFlySim, a simulation platform for various types of unmanned
aerial vehicles (UAVs), aimed at boosting UAV development
efficiency and ensuring safe testing. However, progress in
UUV simulation technology has been slower due to the less
appealing nature of underwater scenarios and the challenges
in accurately simulating the interactions between the marine
environment and underwater vehicles.
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Although there exist several underwater simulation plat-
forms [7]–[10], they are generally designed for specific tasks
and are not easily adaptable to diverse IoUT applications.
The primary challenge lies in their limited intelligence, as it
is difficult to train agent behaviors using simulation data to
effectively complete complex tasks in oceanic environments.
Some notable research has suggested viable solutions to the
aforementioned challenges. In [11], the researchers introduced
a simulation platform designed to model intervention tasks for
underwater vehicles, incorporating newly developed plugins
that emulate water environment effects, UUV thrusters, and
sensors. This work established a foundation for creating a gen-
eral and intelligent UUV simulation platform. However, this
platform lacks sufficient intelligence for testing complex tasks
and is not user-friendly. In recent years, reinforcement learning
(RL) has proven successful for complex tasks across various
robots, including manipulation [13], navigation [14], planning
[15], [16], and interaction [17]. Nonetheless, applying RL
algorithms to train UUVs in real underwater environments
faces hurdles such as low sampling efficiency, unstable training
processes, and safety concerns.

The effectiveness of RL training for agents is heavily influ-
enced by the design of the reward function. Traditionally, re-
ward functions for RL algorithms have been manually crafted
based on expert experience. This method is not only time-
consuming and labor-intensive but also does not ensure the
optimal design of the reward function [18]. Recently, inverse
RL [19] and preference learning [20] have become popular
alternatives for reward function design. These techniques use
human preference feedback to create more suitable reward
models. However, both approaches still require considerable
human effort and extensive data collection, and they often
struggle with poor generalization beyond the training data.
Fortunately, the advent of the large language model (LLM)
addresses this challenge to some extent. Given that LLM
inherently captures human preferences, researchers can simply
provide the LLM with environment abstractions and task re-
quirements. Subsequently, LLMs can generate effective reward
functions for RL training [21].

Based on the above analysis, this paper developed
IMTVSim, a simulator for UUVs dedicated in the UPEG task
based on ROS and Gazebo, aiming to fill the gap in the field
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Fig. 1. Illustration of the framework of IMTVSim, which is mainly divided into simulator layer, low-level control layer, high-level control layer, and RL
training model (including a LLM interface such as GPT-4 model for reward functions design).

of underwater robot simulation and the UPEG task. Our main
contributions can be summarized as follows:

• To the best of our knowledge, this is the first UUV
simulator that combines customizable modules such as
UUV models, underwater detection model, ocean current
model, and 3D underwater scenario, while providing an
RL environment to train UUV intelligence to complete
the difficult task.

• Given the complexity of the ocean environment and to
progressively improve the practicability of the proposed
IMTVSim, we use the GPT-4 in LLMs. Just by giving the
environment abstractions and task requirements, LLMs
can subsequently generate effective reward functions for
RL training.

II. DESIGN AND DEVELOPMENT OF IMTVSIM

In this section, we first introduce the overall framework of
IMTVSim, and then describe the underwater detection model,
ocean current model, followed by the construction of 3D
underwater scenario in IMTVSim.

A. Overall Framework of IMTVSim

Fig. 1 illustrates the overarching structure of IMTVSim,
which is primarily segmented into four layers: the simulator
layer, the low-level control layer, the high-level control layer,
and the RL training model, including an interface with the
LLM for reward functions design. The simulator layer, built
on Gazebo, is tasked with creating the UUV simulation entity
and the virtual environment. The UUV entity encompasses

dynamic models and sensor plugins. The low-level control
layer handles essential operations such as state estimation and
base-level controllers. Integrating Gazebo with ROS, the high-
level control layer is composed of the Gazebo-Environment
class (GazeboEnv), the Robot-Environment class (RobotEnv),
and the Task-Environment class (TaskEnv). This layer also
interfaces with the RL training model and facilitates the use
of the LLM to design reward functions by giving environment
abstraction and task requirements.

B. Underwater Detection Model

UUVs employ sonar to scan the environment within a
restricted range, enabling them to detect nearby obstacles and
monitor targets. This detection process can be consistently
modeled using the active sonar equation [22], as follows

EM = SL− 2TL(f, d) + TS −NL(f) +DI −DT. (1)

All parameters in Eq. (1) are measured in dB. In this con-
text, SL denotes the source level, TL represents transmission
loss, TS is the target strength associated with the reflection
area of the target, NL stands for the environmental noise
level, and DI indicates the directionality index. Additionally,
DT and EM correspond to the detection threshold and the
echo margin of the active sonar, respectively. Moreover, the
transmission loss TL is a function of the detection range d
and the central acoustic frequency f , which is given by
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where a(f) is the attenuation coefficient of sound wave in
water. When the frequency f is given, the maximum detection
radius rc of the AUV is

rc = argmax
d

{EM(d) ≥ 0}. (3)

C. Ocean Current Model

The motion of UUV needs to take into account the influence
of ocean turbulent environment. We use two-dimensional
Navier-Stokes equations [22], [23] to model the ocean tur-
bulent environment as

∂ϖ

∂t
+ (Vc∇)ϖ = ζ∆ϖ, (4)

where Vc = (Vx,Vy) represents the velocity of the current
field, while ϖ and ζ denote the vorticity of the current and the
viscosity of the fluid, respectively. To streamline the Navier-
Stokes equations, the numerical model of the ocean current is
expressed through the superposition of several viscous vortex
functions, as described below
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where pi(t) and p0 represent the current position of UUV
i and the coordinate vector of the Lamb vortex center, re-
spectively. Vx(pi(t)) and Vy(pi(t)) are the velocities of the
ocean current along the X and Y axes perceived by UUV i
at position pi(t) at time t. Furthermore, δ and Γ indicate the
radius and strength of the vortex, respectively.

D. Construction of 3D Underwater Scenario

The realism of the virtual ocean environment significantly
impacts the simulation’s precision, and the primary chal-
lenge in creating a 3D underwater scenario lies in accurately
modeling the seabed based on real-world terrain data. Our
seabed modeling workflow proceeds as follows: initially, we
utilize the Anaconda ogr2ogr library to inspect the hierarchical
data of the S-57 chart and execute non-visual operations
such as format conversion [12]. Subsequently, vector data is
transformed into raster data using QGIS or Arcmap software,
resulting in a terrain file (.tif). This file is then converted to a
height map (.png) with the help of Global Mapper software.
To enhance the accuracy of the generated terrain, we adjust the
pixel resolution and interpolate any blank areas. The resulting
height map is imported into Blender for terrain modeling and
the application of realistic textures. The rendered output (.dae

(a) (b)

Fig. 2. Seabed terrain construction process via Blender and Gazebo. (a)
The seabed terrain modeled by original height map in Blender. (b) The
visualization of seabed terrain rendered using Blender.

file) and texture files (.jpg) are then exported to ROS. Within
ROS, these files are combined and the terrain is saved as
a .world file using Gazebo. Finally, we manually edit the
configuration file to include rigidity parameters, enabling the
simulation of accurate collision effects within the Gazebo
environment. The visualization process is illustrated in Figs.
2(a) and 2(b).

III. PROBLEM FORMULATION IN IMTVSIM

In this section, we first introduce the we first introduce
the universal modeling of the task in IMTVSim via Markov
decision process (MDP), and then we describe the whole
process of reward function design utilizing LLM.

A. Markov Decision Process Modeling

We use RL algorithms to train UUVs for completing cor-
responding tasks in our proposed IMTVSim. Given a state
si, RL tries to train a UUV to learn a parametric policy πθ to
produce an action ai. The UUV can take this action and transit
to the next state si+1 and obtain the corresponding reward ri.
The policy πθ is learned by finding the optimal parameter θ∗

that maximizes the expected total reward

J (θ) = Eτ∼pθ(τ)

[
T∑

t=0

γtrt

]
, (7)

where T is the maximum number of control time steps, γ
represents the discounting factor, and τ denotes the sampled
trajectory containing a sequence of states and actions.

The process of the RL training can be modeled as a MDP,
which can be formulated by a quintuple

U = (S,A,P,R, γ), (8)

where S, A, R represent state space, action space and
reward function, respectively, while P denotes state transition
probability distribution, and γ ∈ (0, 1) is a discount factor.

Given that there are total N UUVs in the environment, so
we can respectively represent state space, action space and
reward function as follows

S = [S1,S2, · · · ,Si−1,Si], (9)

A = [A1,A2, · · · ,Ai−1,Ai], (10)



Environment description

RL training

Optimal
Policy 

Abstraction

Users
Feedback

Environment Apply

=[ , ···, , ]

Dense reward function

Task requirements
Goal 1: Target tracking
Goal 2: Collision avoidance

Goal n: data collection

Apply

Fig. 3. An overall flow diagram of the reward function design utilizing the LLM such as the GPT-4 model.

R = [r1, r2, · · · , ri−1, ri], (11)

where Si, Ai and ri denote the state space, action space and
reward function of the ith UUV, respectively.

B. Reward Function Design utilizing LLM

The UUV refines its policy by learning from actions and
corresponding rewards, which requires a reward function that
effectively balances multiple objectives. To tackle these issues,
we employ the GPT-4 model to generate and shape detailed
reward function codes based on specified objectives. Once
the environment abstraction and optimization objectives are
defined, GPT-4 will create the initial dense reward function
codes. The detailed reward codes are then incorporated into the
RL model in IMTVSim to realize RL training. Nevertheless,
due to the sensitivity of RL training, the inherent randomness
in LLMs, and potential ambiguities in target descriptions, the
initial reward function may not be perfectly aligned with the
desired outcomes.

To address this, we implement the trained policy in the
environment and refine the reward function design through
manual feedback based on observed results. After several
iterations of refinement, the reward function becomes well-
suited to the training task at hand. And the reward function
designed by LLM will be applied to the environment for
further RL training, aiming to help the UUV obtain the optimal
policy π∗

θ . Fig. 3 illustrates the workflow for designing the
reward function using GPT-4.

IV. CONCLUSION

In this paper, an integrated modular training and verification
simulator named IMTVSim for UUVs is developed, with
customizable modules while providing a RL environment with
the GPT-4 model to assist the design of reward functions,
aiming to train UUV intelligence more efficiently to complete
complex tasks. Future work will focus on improving the

suitability of IMTVSim and real-world environment to address
the sim2real challenge.
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