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Abstract—The Internet of Underwater Things (IoUT) is play-
ing an increasingly important role in various applications such
as ocean observation. However, the sensor nodes in IoUT are
susceptible to corrosion by seawater over time, leading to eventual
damage. Based on above analysis, we propose an advanced
framework for underwater node repair utilizing multi-agent
offline reinforcement learning (RL). This framework enables path
planning for multiple autonomous underwater vehicles (AUVs)
based on the perceived external environment, aiming to maximize
node repair rates while minimizing the power consumption of the
AUVs. We first model the node repair task as a Markov decision
process and introduce the multi-agent independent conservative
Q-learning algorithm to solve this problem. In addition, the
large language model GPT-4 is employed to aid in the design
of reward functions, aiming to realize better balance between
each optimization objective during the RL training of AUVs.
Experimental results demonstrate that the proposed framework
exhibits high feasibility and superior performance.

Index Terms—Autonomous underwater vehicles, reinforcement
learning, node repair, Internet of Underwater Things, large
language model.

I. INTRODUCTION

The Internet of Underwater Things (IoUT) has gained atten-

tion for improving ocean exploration and monitoring [1]. How-

ever, due to the complexity and variability of the underwater

environment, the IoUT networks encounter unique technical

challenges compared to terrestrial sensor networks. The harsh

underwater conditions make it difficult to replace or recharge

node batteries in a timely manner. Additionally, sensor nodes

are susceptible to corrosion by seawater over time, leading

to eventual damage. The influence of ocean currents can also

impair the functionality of underwater IoUT nodes [2]. These

factors contribute to node failures, resulting in routing holes,

network congestion, and even network breakdowns, thereby

hindering the fulfillment of long-term monitoring tasks [3].

Consequently, repairing sensor nodes to maintain their proper

functionality is a critical issue that must be addressed in IoUT

networks.

Current research focuses on energy-efficient routing proto-

cols, but in densely deployed networks, this can lead to packet
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collisions and the need for retransmissions [4]. Unfortunately,

existing methods can hardly address increasing sensor node

energy storage or repairing damaged nodes [5]. In recent years,

training multiple Autonomous Underwater Vehicles (AUVs)

using reinforcement learning (RL) methods to accomplish

related tasks has emerged as a prominent topic in the field of

IoUT research. Habob et al. [6] employed the actor-critic RL

method to effectively address the information collection prob-

lem under multiple constraints. Xi et al. [7] established a three-

dimensional grid model of the RL environment and proposed

a D3QN-based AUV path planning scheme that integrates

marine information. This environmental model reduces the

gap with practical applications, and the algorithm provides a

flexible and stable path. Wang et.al [8] proposed a multi-agent

RL based AUV-assisted node repair (RANR) scheme, which

considers limited underwater communication and scheduling

between AUVs. However, the methods adopted in these studies

is online RL, which often results in low data utilization, poor

model convergence, and an inability to avoid the correlation

between training data sets, leading to suboptimal training

outcomes. In contrast, offline RL can effectively mitigate these

shortcomings, offering better training performance and lower

training costs.

Traditionally, the design of reward functions for offline RL

algorithms has been based on experience and manually crafted.

However, this process is time-consuming, labor-intensive, and

does not guarantee the optimal design of the reward function

[9]. In recent years, inverse RL [10] and preference learning

[11] have emerged as popular solutions for designing reward

functions. These approaches develop more suitable reward

models by leveraging feedback from human preferences. Nev-

ertheless, both methods still demand substantial manpower and

data collection, and exhibit poor generalization performance

outside the training data. Thanks to the emergence of large

language model (LLM), researchers can simply provide the

LLM with environment abstractions and task requirements.

Subsequently, LLMs can generate effective reward functions

for RL training [12].

Based on the above analysis, we develop an advanced

framework for underwater node repair via AUVs based on



multi-agent offline RL. The framework uses the LLM GPT-4

to design reward functions and optimizes multiple objectives

such as node repair rate and energy consumption via offline

RL, while considering practical constraints and turbulence in

ocean environment. The primary contributions of this paper

are summarized as follows:

• To the best of our knowledge, this is the first effort in

node repair using multiple AUVs facilitated by offline

RL. This approach leverages pre-existing expert datasets

for offline RL training, thereby minimizing extensive

interactions with the environment.

• The node repair task is modeled as a multi-objective op-

timization task, aiming to minimize energy consumption,

avoid collisions, and optimize the node repair rate. Given

the complexity of the ocean environment and multi-

objective, we introduce the multi-agent independent con-

servative Q-learning (MAICQL) algorithm, which relies

on a decentralized training with decentralized execution

(DTDE) model for offline training. And then we utilize

the LLM GPT-4 to assist the design of reward functions.

• Extensive simulation experiments indicate that our

framework can optimize multi-objective simultaneously,

thereby enhancing work efficiency. Compared to other al-

gorithms, the proposed framework demonstrates superior

cumulative rewards, enhanced node repair rate, improved

energy efficiency and lower collisions number.

The remainder of this paper is organized as follows. Section

II elaborates on the development of the system model. Section

III describes the problems that need to be addressed, and the

detailed content of the reward function for LLM-aided design

are elaborated. In Section IV, we introduce the MAICQL al-

gorithm. The simulation results and corresponding discussions

are provided in Section V, with the conclusion presented in

Section VI.

II. SYSTEM MODEL

A. Underwater Nodes Repair Model

The system model of the underwater node repair task is

illustrated in Fig. 1, consisting of four main components:

common nodes, damaged nodes, AUVs, and sea/land base

stations. Common nodes operate normally, while damaged

nodes require repairs due to energy issues or environmental

damage. Besides, AUVs are deployed for node repairs, which

are equipped with necessary tools. Sea/land base stations serve

as centers for data management and coordination of repair

operations for multi-AUV.

In the repair effort, the AUVs collaborate to identify faulty

nodes and transport them to an onshore facility for recharging

or maintenance. Concurrently, it is essential to account for

the significant impact of ocean turbulence on the motion

and energy consumption of AUVs. Therefore, AUVs should

avoid turbulent regions during operation to optimize energy

utilization.

Fig. 1: Multi-AUV assisted underwater nodes repair scenario.

B. Damaged Node Selection Model

In underwater nodes repair task, it is imperative that AUVs

prioritize the repair of nodes that exhibit a heightened level of

urgency. We define the data transmission rate �i(t) ∈ [0, �max
i ]

of node i at time t as an indicator to determine the severity

of node failure, where �max
i represents the maximum data

transmission rate of node i. A smaller value of �i(t) indicates

a more severe potential fault in the node, suggesting an urgent

need for repair. However, the data transmission rate of a node

is influenced by the accumulation ratio gi(t) of data in the

node. The ratio gi(t) is defined as follows

gi(t) =
θi(t)

θmax
, (1)

where θi(t) ∈ [0, θmax] represent the data storage capacity of

node i at time t, and θmax denote the maximum data storage

capacity of the node. If gi(t) is significantly large, it indicates a

substantial data backlog at the current time, thereby impeding

the data transmission rate.

Taking into account the actual conditions, the priority of

node repair is influenced not only by the aforementioned two

factors but also by the distance between node i and AUV k.

Consequently, we define the repair priority Qk
i (t) of a node

as follows

Qk
i (t) =

θmax

(θi(t) + ε)(�i(t) + ε)
− ξdki (t), (2)

where dki (t) represents the relative distance between AUV

k and node i, ε and ε are constants introduced to prevent

calculation errors when θi(t) and �i(t) are equal to zero, and

the parameter ξ is a penalty factor. The value of ξ should not

be excessively large to avoid the AUV prioritizing the repair

of distant but severely faulty nodes. By calculating Qk
i (t), the

AUV can prioritize the repair of nodes with greater damage

severity while considering the relative distance, thereby en-

hancing the overall efficiency of the system.

C. AUV Energy Consumption Model

During the node repair process, the energy consumption

of an AUV is attributed to two primary factors: the energy



consumed during the stationary repair of a damaged node

(hover energy consumption) and the energy expended while

traversing between two damaged nodes. Utilizing principles

from computational fluid dynamics (CFD), the resistance of

an AUV hovering underwater can be expressed as follows

λh
j = 0.5ρs‖Vc(Y

t
j )‖22SaΨd, (3)

The resistance during navigation can be expressed as

λn
j = 0.5ρs‖Vk(Y

t
j )‖22SaΨd, (4)

where ρs is the density of seawater, Sa and Ψd are the

resistance coefficient and front area of the AUV, respectively,

Yt
j is the position coordinate vector of AUV j at time t, and Vc

and Vk are the flow velocity and relative velocity at coordinate

Yt
j , respectively. Therefore, the power consumption of AUV

j hovering at the �
th fault node can be calculated as follows

Ph
j [�] =

λh
j [�]‖Vc(Y

�

j )‖22
ϑ

, (5)

where ϑ is the electrical conversion efficiency.

Considering the actual situation, when the AUV moves from

the �
th fault node to the (� + 1)th fault node, the relative

speeds at different positions vary. Therefore, the speed at a

fixed point cannot be used to calculate the energy consumption

of the AUV during the moving process. To address this issue,

we use the average of the relative velocities at the start point,

midpoint, and endpoint of the trajectory to calculate the energy

consumption. Taking the process of AUV j moving from the

�
th fault node to the (�+ 1)th fault node as an example, the

average relative velocity is expressed as follows

vk

(
Y�

j

)
=

vk

(
Y�

j

)
+ vk

(
Y�m

j

)
+ vk

(
Y�+1

j

)
3

, (6)

where Y�m

j is the position vector of the middle point of

the trajectory. Therefore, the power consumption of the AUV

along this motion trajectory is

Pm
j [�] =

0.5ρs‖vk
(
Y�

j

)
‖22SaΨd‖vk

(
Y�

j

)
‖22

ζ
. (7)

According to the above analysis, it can be concluded that

the total energy consumption of AUV j is

Gj =
M∑
i=1

AFj
o∑

�=1

βj,i[�]P
h
j [�]Tj,i[�] +

AFj
o∑

�=1

Pm
j [�]Jm

j [�], (8)

where M represents the set of all nodes, βj,i[�] = 1 denotes

the event that the AUV j hovers over node i for the �
th time,

and conversely, βj,i[�] = 0. Tj,i[�] represents the hovering

time over the node, AFj
o denotes the set of hovering points of

AUV j, and Jm
j [�] represents the time required to move from

the �
th node to the (�+ 1)th node.

III. PROBLEM FORMULATION

A. Optimization Problem Formulation

In this study, the objective of multi-AUV collaboration is

to maximize the net profit of the overall operation. For AUV

j, the node repair rate μj represents the benefit, while the

number of collisions Cj and the AUV energy consumption Gj

represent the costs. The μj is defined as follows

μj =
Bc
j

B , (9)

where Bc
j represents the number of nodes that have been

repaired, and B denotes the total number of nodes that need

to be repaired.

Therefore, the net profit from this operation can be ex-

pressed as follows

Pr =
N∑
j=1

(δμj − σCj)−
N∑
j=1

ωGj , (10)

where N is the total number of AUVs, δ, σ and ω are the

contribution factors of the node repair rate, the number of

collisions and the AUV energy consumption, respectively.

Based on the above analysis, the optimization problem of

node repair can be characterized as follows

OP : max
β

Pr =

N∑
j=1

(δμj − σCj)−
N∑
j=1

ωGj , (11)

s.t.
N∑
j=1

βj,i = 1, ∀i ∈ M, (12)

M∑
i=1

βj,i = 1, ∀j ∈ N, (13)

where the first optimization constraint specifies that only one

AUV can hover over a node at any given time, while the

second constraint stipulates that each AUV can hover over

only one node at a time.

B. Markov Decision Process and Reward Function Design

Given that the constrained optimization problem is a high-

dimensional NP-hard problem, it is challenging to solve di-

rectly. Therefore, we first transform it into a Markov decision

process (MDP) and then address it using the RL algorithm. In

this study, the MDP is represented by the following quintuple

Φ = {S,A,L,R, γ}, (14)

where S, A, L and R represent state space, action space,

state transition probability distribution and reward function

respectively, and γ is the discount factor.

In the MDP, the AUV relies on the rewards from envi-

ronmental feedback to evaluate its action strategy. Therefore,

designing a reasonable reward function is crucial for the

effective training of the AUV. Conventionally, the development

of reward function has been manually crafted based on expert

experience. However, this approach is both time-consuming



Fig. 2: The workflow diagram of designing the reward function based on the LLM GPT-4.

and labor-intensive, and the resulting reward functions are not

guaranteed to be optimal.

To address these challenges, we introduced the LLM GPT-4,

which generates and shapes dense reward function code based

on objective descriptions. After defining the optimization

objective, GPT-4 generates initial dense reward function code

using environmental information. This dense reward code is

then integrated into the RL algorithm for training strategies.

Unlike inverse RL, our method can design symbolic rewards

with high interpretability. However, given the sensitivity of RL

training, the inherent randomness of large language models,

and the potential ambiguity in target descriptions, the initial

reward function may not be fully suitable for achieving the

desired goal. We address this by implementing the trained

strategy in the environment and refining the reward function

design through manual feedback based on observed outcomes.

After multiple iterations of improvement, the designed reward

function becomes well-suited to the current training task. The

workflow diagram of designing the reward function based on

the LLM GPT-4 is presented in Fig. 2. The designed reward

function includes the following parts:

1) Limit energy consumption: To ensure that the AUV

conserves as much energy as possible and avoids waste during

task execution, the reward function should be designed to

provide negative feedback when the AUV consumes energy

R(1) = −2(

M∑
i=1

AFj
o∑

�=1

βj,i[�]P
h
j [�]Tj,i[�] +

AFj
o∑

�=1

Pm
j [�]Jm

j [�]).

(15)

2) Improve node repair rate: During a given period, a higher

node repair rate corresponds to a higher degree of repair

completion

R(2) = 5

N∑
j=1

Bc
j

B . (16)

3) Collision prevention: To ensure the safety of multiple

AUVs operating concurrently, it is essential to maintain a

distance between AUVs that exceeds a certain threshold.

Consequently, a negative reward is established to penalize

collisions

R(3) = 2
N∑

i=1,i �=j

(1−max (dj,i, ds)/ds)/(N − 1), (17)

where dj,i indicates the distance between AUV i and AUV j,

and ds indicates the safety distance between the two AUVs.

4) Encouraging priority repair of high-priority nodes: based

on previous analysis, the AUV should prioritize the repair

of high-priority nodes to enhance repair efficiency. When the

distance between the AUV and the target device is less than

a specified value, the system provides a positive reward, with

the reward increasing as the distance decreases. Therefore, the

reward function is defined as follows

R(4) =

{
1

(Di
j(t)+o)

, Di
j(t) ≤ dr,

0, otherwise,
(18)

where dr represents the set judgment threshold, Di
j(t) denotes

the distance between the AUV and the target node, and o
is a constant introduced to prevent calculation errors when

Di
j(t) = 0.

Based on the above analysis, the total reward function of

this study is set as follows

R =

4∑
i=1

R(i). (19)

IV. ALGORITHM DESIGN

Offline RL allows the agent to learn from a pre-collected

expert dataset, achieving an optimal policy without interaction

with environment. Among these offline RL algorithms, CQL



Fig. 3: The framework of our proposed multi-AUV assisted underwater nodes repair based on multi-agent offline RL.

reduces extrapolation error effects by adding constraints to

the Bellman equation, keeping function values low for dataset

deviations. This study expands CQL to MAICQL, training

multi-AUV relying on DTDE model. This approach is applied

to perform node repair tasks in a complex ocean environment,

with the training dataset generated from a previously trained

multi-agent independent soft actor-critic (MAISAC) algorithm

[13]. The framework of our proposed multi-AUV assisted

underwater nodes repair based on multi-agent offline RL is

shown in Fig. 3.

In the MAICQL algorithm, AUV j is equipped with two

value functions, Q1j and Q2j , as well as a policy function

πj
θ . Additionally, two target value functions, QT

1j and QT
2j ,

are employed to mitigate overestimation during the update

process. For the value functions Q1j and Q2j , the updated

equations are as follows

εt1 ←

εt−1
1 − ηQ∇θ

(
α · Es∼D

[
log

∑
a

exp

(
Q

st−1
1

1j (s, a)

)

− Ea∼πj
θ(a|s)

[
Q

st−1
1

1j (s, a)

]]

+
1

2
E(s,a)∼D

[(
Q

st−1
1

1j (s, a)−B̂
πθQ

st−1
1

1j (s, a)
)2

])
,

(20)

εt2 ←

εt−1
2 − ηQ∇θ

(
α · Es∼D

[
log

∑
a

exp

(
Q

st−1
2

2j (s, a)

)

− Ea∼πj
θ(a|s)

[
Q

st−1
2

2j (s, a)

]]

+
1

2
E(s,a)∼D

[(
Q

st−1
2

2j (s, a)−B̂
πθQ

st−1
2

2j (s, a)
)2

])
,

(21)

where B̂
πθ is the Bellman operator of policy πθ, E is the

expectation, D is the state-action space, and α is the entropy

regularity coefficient. For the target value functions QT
1j and

QT
2j , the updated equations are as follows

ε−1t = τεt1 + (1− τ)εt−1
1 , (22)

ε−2t = τεt2 + (1− τ)εt−1
2 , (23)

where τ is the soft update coefficient, and the parameter update

equation of the policy function πj
θ is

θt ← θt−1−
ηπ∇θEs∼D,a∼πj

θ(a|s)
[
αlogπj

θ(a|s)−min(Qε1
1j(s, a), Q

ε2
2j(s, a))

]
,

(24)

where ηπ is the weight coefficient.

V. SIMULATION RESULTS AND ANALYSIS

To evaluate the performance of MAICQL algorithm and

proposed framework, this study first conduct experiments to

compare MAICQL with MAISAC, behavioral cloning (BC)

and generative adversarial imitation learning (GAIL). The

experimental results are presented in Fig. 4 and Table I. For

clearer visualization, the cumulative reward value in Fig. 4

is adjusted by adding 2000 to the original reward value.

The results indicate that the proposed MAICQL algorithm

demonstrates superior performance compared to the other

three algorithms, evidenced by higher cumulative reward,

increased node repair rate, lower energy consumption, and

fewer average AUV collisions number. These results validate

the efficacy of our advanced framework.

To validate the feasibility of our proposed advanced frame-

work for node repair, two AUVs are trained in both turbulent

and non-turbulent environments to perform the node repair

task. The simulation results are presented in Fig. 5 and Fig. 6.

As depicted in the figures, the AUVs effectively cooperate and

efficiently complete node repair tasks regardless of the pres-

ence of turbulence. Additionally, in turbulent environments,

the AUVs can optimize their paths to avoid turbulent areas as

much as possible. These experimental results demonstrate that

the proposed method can adapt to varying external conditions

and has broad applicability.



TABLE I: Algorithm Performance Comparison

Algorithm Cumulative Reward Node Repair Rate Energy Consumption AUV Collisions Number

MAICQL -753 0.93 137.39 1.2

MAISAC -783 0.90 143.57 2.6

BC -1053 0.55 156.94 5.5

GAIL -1276.52 0.39 167.81 5.7

44 88 132 176 220
epochs
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Fig. 4: Cumulative reward of experiments utilizing MAICQL,

MAISAC, BC, and GAIL for training, respectively.

Fig. 5: Trajectories of AUVs for the node repair task in the

turbulence-free environment.

VI. CONCLUSION

In this study, we develop propose an advanced frame-

work for underwater node repair utilizing multi-agent of-

fline RL. The framework optimizes multiple objectives such

as node repair rates and energy consumption, considering

Fig. 6: Trajectories of AUVs for the node repair task in the

turbulence environment.

practical constraints and turbulence in ocean environment.

More specifically, we model the problem as a MDP, while

proposing the DTDE based MAICQL algorithm to address

the challenge of efficiently training multi-AUV to repair the

nodes that exhibit varying degrees of damage. Besides, the

tailored reward function is designed using the LLM GPT-4.

Simulation outcomes demonstrate the superior performance of

the proposed framework. Future work will focus on conducting

the sim2real experiments in the real ocean environment.
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