
EasyUUV: An LLM-Enhanced Universal and Lightweight Sim-to-Real
Reinforcement Learning Framework for UUV Attitude Control

Anonymous Authors

Fig. 1: Illustration of our developed EasyUUV framework. EasyUUV is an LLM-enhanced universal and lightweight Sim2Real RL
framework for UUV attitude control, which trains the expert policy via RL in parallelized simulation, while transferring it to a real UUV
platform. A multimodal LLM agent further adapts controller parameters using dynamics and sensor feedback for robust performance.

Abstract— Despite recent advances in Unmanned Underwater
Vehicle (UUV) attitude control, existing methods still struggle
with generalizability, robustness to real-world disturbances, and
efficient deployment. To address the above challenges, this
paper presents EasyUUV, a Large Language Model (LLM)-
enhanced, universal, and lightweight simulation-to-reality rein-
forcement learning (RL) framework for robust attitude control
of UUVs. EasyUUV combines parallelized RL training with
a hybrid control architecture, where a learned policy outputs
high-level attitude corrections executed by an adaptive S-
Surface controller. A multimodal LLM is further integrated
to adaptively tune controller parameters at runtime using
visual and textual feedback, enabling training-free adaptation
to unmodeled dynamics. Also, we have developed a low-cost 6-
DoF UUV platform and applied an RL policy trained through
efficient parallelized simulation. Extensive simulation and real-
world experiments validate the effectiveness and outstanding
performance of EasyUUV in achieving robust and adaptive
UUV attitude control across diverse underwater conditions. The
source code is available in the following repository: https:
//anonymous.4open.science/r/easyuuv/ .

I. INTRODUCTION

Unmanned Underwater Vehicles (UUVs) are transform-

ing underwater operations, playing critical roles in marine

research [1], environmental monitoring [2], and resource

exploration [3]. However, achieving robust and intelligent au-

tonomy for UUVs—particularly in attitude control—remains

an open challenge. UUVs operate in complex, highly dy-

namic, and partially observable environments, where nonlin-

ear hydrodynamics, ocean currents, and wave disturbances

introduce significant uncertainty. These factors complicate

the design of reliable attitude control systems, which are es-

sential for high-stakes missions such as coral reef navigation

[4], pipeline inspection [5], and sample retrieval [6].

Traditional and mainstream controllers—such as PID [7],

Model Predictive Control (MPC) [8], Sliding Mode Control

(SMC) [7], and Fuzzy Logic Control (FLC) [9]—offer partial

solutions but are hindered by their reliance on accurate

dynamics modeling or limited adaptivity. Their performance

often degrades in uncertain conditions due to modeling

inaccuracies, hysteresis, and control overshoots, raising risks

in unstructured real-world deployments [10], [11].
Reinforcement Learning (RL), by contrast, has emerged

as a promising data-driven alternative for autonomous agents

to learn robust control policies through interaction [12]. In

particular, unlike traditional controllers that have inadequate

adaptivity or depend on accurate system identification, RL

can learn directly from experience, thereby eliminating the

need for precise hydrodynamic modeling and enabling end-

to-end optimization toward task objectives [13]. As a re-

sult, RL is especially well-suited for underwater environ-

ments, which are nonlinear, partially observable, and difficult

to model analytically. Building on this advantage, RL’s

adaptability to high-dimensional, nonlinear dynamics has

motivated extensive UUV-related research [14], [15], [16].

Nevertheless, despite these strengths, three major challenges

remain: the simulation-to-reality (Sim2Real) gap, limited

generalizability, and deployment inefficiency. To address

these issues, domain randomization can partially mitigate

model mismatch by injecting variability into simulation [14];

however, it still cannot fully prevent instability under attitude

perturbations or parameter shifts [17]. Moreover, the high

computational cost of RL training and the lack of gener-

alizable hydrodynamic/thruster models further constrain its

practical application across diverse UUV platforms.
In addition to the challenges above, real-world deployment

of RL-based controllers often requires extensive manual

tuning to account for variations in vehicle dynamics, en-

vironmental conditions, and sensor noise—especially when



transitioning across different UUV platforms or operational

domains [18]. This lack of adaptability not only hinders scal-

ability but also increases the risk of degraded performance

or mission failure in unfamiliar conditions [19]. Fortunately,

the introduction of the large language model (LLM) enables

online, training-free adaptation of controller parameters [20].

By leveraging historical system trajectories, real-time sen-

sory feedback, and task-specific context encoded in both

visual and textual forms, the LLM can dynamically adjust

key control parameters without interrupting operation [21].

This capability enhances the robustness and generalizability

of the control system, allowing a single RL-trained policy

to maintain stable performance across diverse and uncertain

underwater environments [22].
Based on the above analysis, we develop EasyUUV, a

lightweight and universal Sim2Real RL framework enhanced

with LLM. By combining parallelized RL training with

LLM-driven adaptation, it helps bridge the Sim2Real gap

for scalable deployment across platforms. The hybrid ar-

chitecture employs an RL policy for high-level corrections

executed by a nonlinear adaptive S-Surface (A-S-Surface)

controller, ensuring robust control under 6-DoF coupling.

EasyUUV leverages an Isaac Lab [23]-based simulation

with hydrodynamic models for efficient parallel training

and fast GPU-based convergence. At runtime, a multimodal

LLM agent adjusts controller parameters using visual and

textual feedback, maintaining performance under unmodeled

dynamics, noise, and actuator drift, thus providing a gener-

alizable solution for real-world UUV attitude control.
Our main contributions are summarized as follows:

• A universal and lightweight RL-based control frame-
work: EasyUUV supports scalable Sim2Real atti-

tude control through platform-agnostic modeling and

a CUDA-accelerated parallelized RL training archi-

tecture. To enhance control performance under noise

and disturbances, we further develop an A-S-Surface

controller that integrates nonlinear control and adaptive

compensation for improved robustness.

• LLM-driven adaptive controller tuning: EasyUUV

integrates a multimodal LLM-based module that adap-

tively adjusts controller parameters at runtime based

on historical dynamic responses and real-time sensory

feedback, enabling robust adaptation without retraining.

• Zero-shot transfer and extensive experiments: We

develop a low-cost UUV platform integrated with

our LLM-enhanced Sim2Real RL framework, enabling

zero-shot transfer of expert policies from simulation to

reality. Validated through tank experiments and sea tri-

als, EasyUUV showcases outperforming robustness and

adaptivity across diverse conditions in attitude control.

II. ARCHITECTURE AND MODULES

In this section, we introduce the EasyUUV framework in

detail, including both simulation and hardware platforms.

A. Architecture Overview
As shown in Fig. 2, the proposed EasyUUV framework in-

tegrates three components: a composite controller combining

an RL policy, a nonlinear A-S-Surface module, and LLM-

based adaptation; a parallelized RL training environment

with hydrodynamic and thruster modeling; and a Sim2Real

deployment pipeline for real-world adaptation. The obser-

vation vector includes the target attitude, current attitude,

and depth offset, while the RL policy outputs deviation

commands that the A-S-Surface controller converts into

control inputs and PWM signals to drive the thrusters.

The RL policy is trained in a high-fidelity simulation built

on NVIDIA Isaac Lab with MuJoCo-based hydrodynamics

[24], where domain randomization (DR) over parameters

such as COB–COM offsets [14] and thruster nonlinearities

improves generalization, and GPU acceleration ensures rapid

convergence. After training, the policy is deployed directly

to real UUVs without fine-tuning, while at runtime a mul-

timodal LLM agent enhances adaptability by adjusting con-

troller parameters in real time based on visual dynamics and

textual sensor feedback, ensuring robust zero-shot transfer

and reliable performance in diverse underwater conditions.

B. Simulation Platform and Controller Design

A carefully designed simulation platform is therefore es-

sential for achieving the above capabilities. In the following,

we develop a platform that enables efficient RL training and

zero-shot policy transfer to real UUVs through simplified,

hardware-agnostic modeling integrated with NVIDIA Isaac

Lab, while also supporting our LLM-enhanced RL-based

control method for robust and adaptive UUV attitude control.

For hydrodynamic modeling, we adopt MuJoCo-based

phenomenological models [24] to simulate rigid-body inter-

actions in fluid. Each object is approximated by an equivalent

inertia box computed from its mass m and inertia tensor I,

with half-dimensions ri that can be computed as follows:

ri =

√
3

2m
(Ijj + Ikk − Iii), (1)

which enables the calculation of total fluid forces finertia =
fD+fV and torques ginertia=gD+gV , incorporating both drag

and viscous effects. Drag forces and torques are modeled as

fD,i=−2ρrjrk|vi|vi and gD,i=− 1
2ρri(r

4
j+r

4
k)|ωi|ωi, while

viscous terms are fV,i =−6βπreqvi and gV,i =−8βπr3eqωi,

with req=(rx+ry+rz)/3 and β denoting the fluid viscosity.

For thruster dynamics, we implement a realistic actu-

ation pipeline that modulates thrust via PWM signals to

electronic speed controllers. Based on empirical data from

Blue Robotics T200 thrusters at 16V [25], the thrust output

τΩ (in N) is modeled as a function of normalized input

a ∈ [−1, 1], corresponding to 1100–1900 μs PWM, using

a piecewise quadratic fit:

τΩ=

⎧⎪⎨
⎪⎩
29.54a2 + 26.10a− 2.44, a∈(0.08, 1],

0, a∈ [−0.08,0.08],

−21.75a2 + 21.75a+ 2.07, a∈ [−1,−0.08).

(2)

To improve policy generalization and real-world adapt-

ability, we apply domain randomization within a high-

efficiency, parallelized simulation environment [26]. During

training, key parameters such as the COB–COM offset,
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Fig. 2: Architecture of the EasyUUV framework, which comprise three parts: (a) RL and A-S-Surface-based composite controller module;
(b) Parallelized RL training simulation environment developed on Isaac Lab; and (c) Sim2Real deployment module for real-world adaption.

TABLE I: Domain Randomization Configuration Details

Parameters Distributions Values (Low, High)

COB-COM offset (m) Uniform Sphere (0.075, 0.15)
Volume (L) Uniform (1.5, 3)

Controller Gain Uniform
(15, 30)% of the

relative value

volume, and controller gains are randomly perturbed to

account for structural and dynamic variations. For instance,

the COB–COM offset affects torques from gravity and buoy-

ancy—critical for attitude control. All simulation models are

implemented in Isaac Lab and trained with GPU acceleration.

The full set of randomized parameters is listed in Table I.

Building on this simulation environment, we implement

an RL policy using the RSL-RL library [27] with Proximal

Policy Optimization (PPO) for training [28]. The UUV

observes a 9-dimensional state vector �ot = {�q, �qdes,Δz},

where Δz represents the depth error, while �q and �qdes denote

the current and desired attitude quaternions, which ensure

singularity-free orientation tracking. The policy then outputs

a 4-dimensional action vector �at = {Δφ,Δϕ,Δθ,Δd},

representing deviations in roll, pitch, yaw, and depth, which

are passed to the low-level controller, while a reward function

composed of three terms guides the policy toward stable

behavior. The terms are listed as follows:
• rq = exp(−|�q�q�des|) encourages orientation alignment,

• rp = exp(−||�a||b) penalizes excessive control actions

(with b = 1),

• rz = exp(−||Δz||2) promotes accurate depth tracking.
These terms are then linearly weighted to guide the policy

toward stable and efficient behavior.

At the low level, we employ an A-S-Surface controller
[29] to ensure a fast and robust response under underwater

disturbances. Based on the system state x(t) = [δ(t), δ̇(t)]�,

the angle error and its derivative are defined as e(t) = δdes −
δ(t) and ė(t) = −δ̇(t). The control output is computed as:

ut =
2

1 + exp(−ζ1e(t)− ζ2ė(t))
− 1 + Δu(t), (3)

with the adaptive compensation term updated by:

Δu(t+ 1) = Δu(t) + αe(t)sign(ut), (4)

where α is a tunable learning rate. This formulation offers

both high gain for large deviations and smooth convergence

near the setpoint.
To enable zero-shot transfer in Sim2Real deployment and

reduce manual tuning under runtime variations, we incorpo-

rate a multimodal LLM that adaptively adjusts controller

parameters (e.g., ζ1, ζ2) without the need for retraining.

Specifically, the LLM processes two types of input:
• Visual logs, providing a compact representation of con-

trol trends and tuning history, conveying complex infor-

mation concisely while avoiding redundant decisions;

• Textual data, including sensor readings and user instruc-

tions that offer fine-grained, non-visual information.
These inputs are processed via a lightweight API, with

the LLM prompted by context-rich histories and restricted

to output adjustment values. Rather than generating new

parameters directly, these outputs indicate the direction and

scaling factor for modifications. To ensure stability and pre-

cision, several fuzzy rules are predefined for scaling factors

(e.g., 2× / 0.5× for major changes, 1.5× / 0.67× for finer

refinements). This approach enhances numerical stability

when handling quantitative inputs [30] and enables timely

tuning decisions, thereby improving control robustness in

dynamic and various underwater environments.

C. Hardware Platform
Our EasyUUV hardware platform (Fig. 3) is a compact,

low-cost, and modular testbed built to support the LLM-



Fig. 3: Exploded view of our EasyUUV hardware platform.

enhanced RL framework and enable Sim2Real zero-shot

transfer. The hull combines 3D-printed ABS with aluminum,

balancing durability and ease of manufacturing. Costing

about $1000 USD, it is far more affordable than conventional

UUVs, while its modular design supports diverse payloads.

The propulsion system uses eight custom-built thrusters with

thrust characteristics similar to Blue Robotics T200, arranged

in a fully actuated 6-DOF configuration with vibration iso-

lation to reduce sensor noise.

An ESP32-WROOM microcontroller executes the A-S-

Surface controller at 100 Hz using gains pre-calibrated in

simulation testing. A low-latency RS-485 tether relays real-

time commands from a surface laptop and runs an expert-

level RL policy. A 9-DOF MPU9250 IMU with complemen-

tary filtering handles sensor fusion. The entire platform fits

within a 30 L waterproof case, weighs under 20 kg, and

is operable by one person—making it portable and cost-

effective for research-grade attitude control. By mirroring

simulation dynamics and using LLM for online fine-tuning,

EasyUUV enables robust Sim2Real zero-shot transfer.

III. EXPERIMENTS

In this section, we describe the experimental setup used for

both simulation and real-world testing. As shown in Fig. 4,

the EasyUUV testbed consists of UUV hardware connected

to a host computer, which performs RL training, policy

deployment, and real-time sensor data collection. To mimic

realistic underwater dynamics, we also apply two dedicated

perturbation generators in a confined indoor tank.

A. Simulation Setup

The simulation training was conducted on a computer

equipped with a Ryzen 9 7945HX CPU and an RTX 4060

GPU. A total of 460 episodes (∼ 3 × 107 steps) were

completed in approximately 130 seconds, demonstrating high

computational efficiency and rapid policy iteration.

Toward the end of training, we introduce two evaluation

tasks to assess the Mean Square Error (MSE) performance

of different control strategies. Task 1 involves tracking a

smooth sinusoidal signal, while Task 2 requires following a

more complex trajectory constructed by summing multiple

sine waves with distinct frequencies:

s(t) = A ·
∑
f∈F

sin(2πft), (5)

Fig. 4: Experimental testbed for real-world validation of EasyUUV.

where A is the amplitude (in radians), F is the set of

frequencies (in Hz), and t denotes time (in seconds). The

specific parameters for each attitude angle are:

• Yaw: A = 1.35, F = {-0.1, 0.2, 0.4, 0.8, 1.6, -3.2},

• Pitch: A = 1.10, F = {-0.1, 0.2, 0.5, -1.0, 2.0, 3.5},

• Roll: A = 0.95, F = {0.15, 0.3, 0.5, -0.9, 1.8, -3.0}.

To further evaluate tracking accuracy, we define the com-
pound error at time t as the sum of absolute differences

between actual and desired yaw, pitch, and roll angles

extracted from the corresponding quaternions:

CompoundErrort =
∑

i∈{φ, ϕ, θ}
|it − ides,t|. (6)

B. Simulation Results

We first conduct the simulation RL training, as shown in

Fig. 5. The curves compare three controllers—RL with A-S-

Surface, S-Surface, and PID—in terms of cumulative reward

and MSE. Here the controller parameters are primarily

adopted from [11] to ensure a fair baseline for compari-

son. In Fig. 5(Left), A-S-Surface converges the fastest and

achieves the highest final reward, indicating superior learning

efficiency. S-Surface shows slower convergence and lower re-

ward, while PID performs worst with minimal improvement.

In Fig. 5(Right), A-S-Surface also maintains the lowest MSE

throughout training, followed by S-Surface with moderate

error, and PID with consistently the highest MSE. These re-

sults highlight clear advantages of the A-S-Surface controller

in adaptive control, particularly in improving learning and

tracking performance.

Building on these observations, Fig. 6 provides a com-

plementary comparison using bar charts of MSE values for

the same three controllers across two representative tasks

under RL-enabled (w/ RL) and non-RL (w/o RL) settings.

In the RL case (Fig. 6(Left)), A-S-Surface consistently

achieves the lowest MSE, demonstrating superior tracking

accuracy and robustness, while S-Surface shows moderate

performance and PID the highest MSE. In the non-RL case

(Fig. 6(Right)), all controllers experience a performance

drop with higher MSE, yet A-S-Surface still performs best,

indicating its adaptive structure provides baseline robustness.

Overall, these results underscore the combined benefits of RL

and adaptive control: RL effectively reduces tracking error,



Fig. 5: Training curves of RL with different controllers in terms of reward and MSE. (Left) Reward curves. (Right) MSE curves.

Fig. 6: Comparison of MSE across two tasks for different controllers, under both RL and non-RL settings. (Left) w/ RL. (Right) w/o
RL.

TABLE II: The MSE Results under Varying Domain Randomiza-
tion Levels in Task1 and Task2.

Settings NDR SDR LDR

Task 1
In domain 0.0054 0.0051 0.0061
Pos. buoy 0.0344 0.0087 0.0110
Neg. buoy 0.0339 0.0091 0.0092

Task 2
In domain 0.0050 0.0057 0.0061
Pos. buoy 0.0388 0.0066 0.0160
Neg. buoy 0.0320 0.0079 0.0132

and A-S-Surface remains the most reliable across different

conditions.

Building on this foundation, we next examine the effect

of DR for RL training. Specifically, we present MSE re-

sults under different DR levels—None (NDR), Small-scale

(SDR), and Large-scale (LDR)—to analyze the impact of

physical variability on policy generalization. To evaluate

out-of-domain performance, we fixed the UUV mass while

varying its volume to create two conditions: density at 0.95×
and 1.05× the default value (≈ water density), denoted

as Pos. buoy and Neg. buoy, respectively. The policies

were trained with RL using the A-S-Surface controller. As

shown in TABLE II, policies without DR suffer significant

MSE degradation under buoyancy shifts, whereas SDR and

LDR reduce performance loss, with SDR achieving better

generalization and LDR showing less stability. Thus, these

findings suggest that exposing policies to broader physical

uncertainties during training improves robustness and cross-

domain performance.

Having validated robustness against environmental vari-

ability, we then turn to attitude tracking performance. To fur-

ther evaluate attitude tracking in simulation, Fig. 7 compares

yaw, pitch, and roll responses under Task 2. In Fig. 7(Left),

RL+A-S-Surface achieves the closest tracking with fast

convergence and minimal steady-state error, RL+S-Surface

shows larger deviations and mild oscillations, while RL+PID

responds more slowly with significant errors, especially in

pitch and roll. Fig. 7(Right) further shows that A-S-Surface

with RL attains higher accuracy and responsiveness than its

non-RL counterpart, which exhibits delays and larger errors.

Moreover, Fig. 8(Left) illustrates compound error evolution:

RL+A-S-Surface maintains the lowest and most stable error,

RL+S-Surface shows moderate fluctuations, and RL+PID

suffers larger deviations, particularly around 10–12s and near

the end. Finally, Fig. 8(Right) confirms that RL reduces both

average error (from μ=0.452 to μ=0.103) and variability.

Overall, the results highlight the advantage of integrating RL

with adaptive control for robust multi-axis attitude regulation.

C. Real-World Deployment
Building on the simulation results, we first conduct the

tank experiment under disturbance-free conditions to evalu-

ate EasyUUV’s Sim2Real zero-shot transfer capability using

the expert-level RL policy directly taken from simulation

with the A-S-Surface controller. As shown in Fig. 9, the RL-

enabled controller tracks desired commands more closely,

keeping roll and pitch near the origin with reduced drift and

phase lag, while the non-RL case shows larger deviations. In

addition, Fig. 10 further compares compound error curves,

where the RL-enabled controller achieves lower average error

(μ=0.2356vs. 0.3836, and μ=0.2421 vs. 0.2876) and reduced

variability (σ=0.080 vs. 0.150, and σ=0.0896 vs. 0.0970),

indicating improved robustness. Taken together, these find-

ings preliminarily confirm EasyUUV can achieve effective

zero-shot transfer from simulation to real-world deployment,

significantly enhancing multi-axis tracking performance.

After the initial disturbance-free tests, we further activate

the perturbation generators to validate the effectiveness of

LLM’s online fine-tuning capacity. As shown in Fig. 11,

EasyUUV rapidly suppresses disturbances and restores the



Fig. 7: Comparison of UUV attitude tracking response curves for different control strategies in simulation experiments. (Left) RL with
different controllers. (Right) w/o RL and w/ RL settings.

Fig. 8: Comparison of UUV attitude compound error curves for different control strategies in simulation experiments. (Left) RL with
different controllers. (Right) w/o RL and w/ RL settings.

Fig. 9: Comparison of UUV attitude tracking response curves for different attitude angles combination, under both RL and non-RL
settings in real-world experiments. (Left) Yaw and Roll. (Right) Yaw and Pitch.

Fig. 10: Comparison of UUV attitude compound error curves for different attitude angles combination, under both RL and non-RL setting
in real-world experiments. (Left) Yaw and Roll. (Right) Yaw and Pitch.

vehicle to the desired trajectory, demonstrating strong ro-

bustness in real-world conditions. Fig. 12 further evaluates

yaw tracking under turbulence, where LLM-based online

parameter tuning progressively reduces the mean squared

error from 0.0812 rad2 to 0.0179 rad2 after two adjustments,

significantly enhancing tracking accuracy and stability. These



t = 0.0s t = 10.5s t = 22.0s
Fig. 11: Snapshots of EasyUUV operating in a indoor tank at t = 0.0s, 12.5s, and 25.0s in real-world experiments.

yyaw_zeta1 *= 1.5 

yaw_zeta1 *= 1.5 

Fig. 12: Tracking response curves under turbulent perturbations with and without LLM-based online fine-tuning of controller parameters.

t = 0.0s t = 12.5s t = 25.0s
Fig. 14: Snapshots of EasyUUV operating in real ocean conditions at t = 0.0s, 12.5s, and 25.0s in sea trials.

Fig. 13: Tracking response curves along the roll, pitch, and yaw
axes in tank experiments under turbulent and transient perturbation.

results confirm that EasyUUV not only withstands perturba-

tions but also leverages LLM-based adjustments for adaptive,

high-precision control in dynamic underwater environments.

To more rigorously assess robustness, two strong transient

perturbations are manually introduced at 10.3s and 19.4s.

As illustrated in Fig. 13, under turbulent disturbances, the

EasyUUV still tracks the desired trajectory closely on all

three axes with steady-state errors near zero. Although roll

and pitch briefly deviate when the manual perturbations oc-

Fig. 15: Tracking response curves along the roll, pitch, and yaw
axes in sea trials under wave-induced turbulence.

cur, the framework quickly suppresses the errors and restores

the trajectory, while yaw tracking remains accurate through-

out. These results verify the robustness and stability of the

proposed framework, enabling EasyUUV to maintain high-

precision control under turbulent and sudden disturbances

while demonstrating strong Sim2Real transfer capability.

Based on the above tests, we finally extend the evaluation

to sea trials. Figs. 14 and 15 present the results, complement-

ing the earlier tank experiments and highlighting the frame-



work’s zero-shot domain transfer capability. The tracking

curves indicate that EasyUUV closely follows desired com-

mands in roll, pitch, and yaw under wave-induced turbulence,

with steady-state errors near zero. In addition, snapshots

at t=0.0s, 12.5s, and 25.0s clearly illustrate operation in

real ocean conditions with waves and strong flows. Together

with the tank experiments, these results confirm that the

framework transfers directly from controlled environments

to open-sea settings without retraining, achieving robust

disturbance rejection and stable high-precision control.

IV. CONCLUSIONS

In this paper, we introduce EasyUUV, an LLM-enhanced

universal and lightweight Sim2Real RL framework for robust

UUV attitude control. The framework integrates domain-

randomized RL training with a hybrid control architecture

that incorporates an A-S-Surface controller, while a multi-

modal LLM agent provides runtime parameter fine-tuning

without additional retraining. Built on a cost-effective 6-

DoF UUV platform, EasyUUV enables efficient simulation-

based policy learning and achieves zero-shot transfer to real-

world deployment. Extensive simulation and field experi-

ments demonstrate that EasyUUV offers stable, generalizable

control, with superior robustness and consistent Sim2Real

performance under diverse underwater conditions.

In the future, we plan to extend EasyUUV with vi-

sual–language models and image enhancement methods to

enable higher-level goal interpretation and resilient naviga-

tion in unstructured, visually degraded environments.
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