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Abstract—Since seamless tracking of the underwater target
is crucial for various underwater applications, we propose a
fusion algorithm combining deep learning and reinforcement
learning for multi-autonomous underwater vehicles (AUVs) to
seamlessly track the underwater target. The framework of our
proposed fusion algorithm consists of two stages. In the first
stage, we propose an underwater target localization method based
on convolutional neural network (CNN) that relies on shaft-rate
electric fields, in which the data collected by underwater sensors
is utilized to train CNN to achieve accurate target localization.
In the second stage, we innovatively propose a multi-agent soft
actor-critic (MASAC) reinforcement learning algorithm based
on centralized training with decentralized execution, in which
appropriate reward functions are designed to encourage multiple
AUVs to cooperate in seamlessly tracking the target in unknown
environments while avoiding obstacles. Simulation results show
that the proposed fusion algorithm has excellent performance,
while the real-time target localization accuracy is 97.8%, and
AUVs can carry out seamlessly cooperative tracking of the target
in unknown environment.

I. INTRODUCTION

Using autonomous underwater vehicles (AUVs) to seam-

lessly track the underwater target is the key to enabling

underwater applications such as underwater rescue and combat

[1]. However, due to the high mobility of the target and

complex underwater environment, the AUV can not accurately

obtain the location of the target in real time, and often needs

to rely on various localization methods. Moreover, the limited

sensing range of a single AUV can not cope with the problem

of target escape, so it’s necessary to use multiple AUVs to

track the target cooperatively, that is, multi-AUV forms an

intelligent group through the underwater acoustic link and

communications, improving the performance of target track-

ing. Therefore, how to achieve accurate target localization and

stable tracking simultaneously has become an open challenge

for seamless underwater target tracking [2].

Traditional target localization methods mainly rely on ac-

tive or passive sonar systems [3], [4]. Nevertheless, due to

the limited propagation ability of the sound signal, these
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techniques are insufficient in terms of localization range and

precision, which are inadequate for the seamless tracking of

the target [5]. In contrast, the target localization method based

on the shaft-rate electric field can quickly and efficiently

locate the underwater target [6]. The primary methods for

shaft-rate electric field localization include precomputed di-

rect current module-based localization, differential amplitude

localization, Kalman filter localization, and odorless particle

filtering localization [7]–[9]. However, these approaches have

limitations, such as low accuracy and restricted applicability.

Recently, deep learning methods have gained attention due

to their potential [10]–[14]. Li et al. [15] adopted deep

learning technology to achieve automatic landing localization

of drones, and Cebollada et al. [16] achieved robot localization

through a combination of convolutional neural networks and

computer vision. Inspired by the application of deep learning

techniques to localization problems, we employ deep learning

methods to study underwater target localization for the first

time.

On the other hand, underwater target tracking is very

challenging due to the lack of prior environmental information,

the existence of obstacles, and the unknown motion state of the

target [17]. Traditional target tracking methods for AUVs have

been mainly relying on global information or by employing

model-based or centralized control algorithms [18]. However,

these methods are limited by the inability to know the future

maneuvering information and behavioral strategies of the tar-

get, which leads to unexpected performance and adaptability.

Fortunately, reinforcement learning (RL) has emerged and

been applied in AUV target tracking, which demonstrates the

ability to address complex tasks and anticipate future outcomes

without extensive prior knowledge [19]. Furthermore, the ad-

vanced approach, multi-agent reinforcement learning (MARL),

has proven effective at enhancing the scheduling and strategic

planning of multi-AUV via joint learning and concerted action,

which has demonstrated superior outcomes across a range of

intricate applications [20].

Based on the above analysis, this work innovatively pro-

poses a fusion algorithm based on deep learning and reinforce-
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Fig. 1. Multi-AUV assisted seamless underwater target tracking scenario.

ment learning for multi-AUV assisted seamless underwater

target tracking. Specifically, we propose an shaft-rate elec-

tric field assisted localization method based on convolutional

neural network (CNN) to accurately locate the target in a

large range in real time. Moreover, we train multi-AUV using

proposed multi-agent soft actor-critic (MASAC) to track the

target collaboratively and seamlessly. Our fusion algorithm

connects the two sub-tasks together and provides a basic

paradigm for seamless underwater target tracking.

The paper is structured as follows. In Section II, we provide

a detailed description of the system model, including the

scenario and basic principles. In section III, we formulate

the problem, present the constrained optimization objective

in detail, while section IV covers the details of the fusion

algorithm. Section V provides simulation results for evaluating

the rationality and performance of proposed fusion algorithm,

followed by conclusions in Section VI.

II. SYSTEM MODEL

In this section, we describe the task scenario, assumptions,

and model definitions used in this article. Fig. 1 depicts the

task scenario, where target T is randomly placed on a two-

dimensional plane at depth of d, and the N AUVs scattered

around the starting point O = (Ox, Oy, d) are ordered to

cooperatively track the target. Coordinates of the target and

AUV i are defined as pT = (xT , yT , d) and Pi = (xi, yi, d),
respectively. The motion state of the target is unknown, and

its location information can be obtained by the undewater

sensor network using the shaft-rate electric field method, that

is, the underwater sensor nodes receive the shaft-rate electric

field generated by the target and transmit it to the surface

base station through the acoustic signal, and then the location

information of the target is solved and broadcast to the AUVs.

Based on the target’s location information broadcast by the

base station, AUVs are ordered to coordinate target tracking.

A. Dynamics of AUVs

Considering the two-dimensional research plane, we adopt

a three-degree-of-freedom underdriven AUV model [20],

for AUV i, it has a body-fixed coordinate system vi =
[vi,x, vi,y, ωi]

T and an earth-fixed reference system ηi =
[xi, yi, θi]

T , where vi,x, vi,y and ωi represents the surge, sway

and yaw velocities, respectively. In addition, θi is the yaw

angle. Then, the dynamics of AUV i is

η̇i = J(ηi) + vi, (1)

Mv̇i +C(vi)vi +D(vi)vi +G(ηi) + σi = τ i, (2)

where M denotes the mass matrix, C(vi) is the skew sym-

metrical matrix, denoting the centrifugal and Coriolis forces,

D(vi) is the damping matrix describing viscous hydrody-

namic force, while G(ηi) represents the restoring forces of

gravity and buoyancy. Moreover, τ i is the input control force,

while σi denotes the forces induced by disturbances. And

J(ηi) denotes the transformation matrix, which is defined as

J(ηi) =

⎡
⎣cos θi − sin θi 0
sin θi cos θi 0
0 0 1

⎤
⎦ . (3)

Considering the practical application, the above kinematics

and dynamics equations need to be discretized [21], which can

be expressed as

ηi,t+1 = ηi,t +ΔT · J(θi,t) · vi,t, (4)

vi,t+1=vi,t+ΔT ·M−1(τ i,t−D(vi,t)vi,t−G(ηi,t)−σi,t), (5)

where subscript t denotes the sampled values at time step t ·
ΔT . Hence, given the input τ t and the current location ηt and

velocity vt, AUV’s next location and velocity can be solved.

B. AUV Communications and Target Detection

The detection of the target and communication between the

AUVs are both accomplished through sonar. These processes

can be consistently modeled using the underwater environ-

ment’s active sonar equation [21]

EM = SL− 2TL(f, d) + TS −NL+DI −DT. (6)

The unit of all parameters in Eq. (6) is dB, where SL,

TL, TS, NL and DI represent the emission sound strength,

transmission loss, target strength, environmental noise level

and directionality index, respectively. DT and EM represent

active sonar’s detection threshold and echo margin, respec-

tively. Furthermore, TL is related to the detection radius d
and the center acoustic frequency f , i.e.

TL = 20 log(d) + da(f)× 10−3, (7)

where a(f) is the absorption coefficient, which can be ex-

pressed as

a(f)=0.11
f2

1+f2
+44

f2

4100+f2
+2.75×10−4f2+0.003. (8)

Environmental noise NL is composed of turbulence noise

Nt, shipping noise Ns, wind noise Nw and thermal noise



Nth. The above noises can be expressed as Gaussian statistics,

and the total power spectral density (PSD) of the NL is

NL(f) = Nt(f) +Ns(f) +Nw(f) +Nth(f). (9)

The noise components in Eq. (9) can be respectively de-

scribed as⎧⎪⎪⎨
⎪⎪⎩
10 logNt(f)=17−30 log f,
10 logNs(f)=30 + 20s+log

(
f26/(f+0.03)60

)
,

10 logNw(f)=50+7.5ω1/2+20 log
(
f/(f+0.4)2

)
,

10 logNth(f)=−15+20 log f,
(10)

where s represents the shipping activity factor, and w denotes

the wind speed in meters per second (m/s), with s ranging

between 0 and 1.

C. AUV Network Representation Relying on Graph Theory

According to graph theory, AUV network can be modeled

as an undirected time-varying graph GU (t), U is the set

of AUVs. The dynamic change of communication link state

between nodes can be represented by the Laplacian matrix

LU (t) of GU (t). The calculation of the LU (t) is given in Eq.

(11), where AU (t) and DU (t) are the adjacency matrix and

vertex degree diagonal matrix of the graph, respectively.

LNu(t)=

⎡
⎢⎢⎢⎣
d1(t) 0 · · · n
0 d2(t) · · · 0
...

...
...

0 0 · · · dM (t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
DU(t)

−

⎡
⎢⎢⎢⎣
a11(t) · · · a1M (t)
a21(t) · · · a2M (t)

...
...

aM1(t) · · · aMM (t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
AU(t)

,

(11)

where di(t) =
N∑
j=1

, and aij(t) represents the signal-to-noise

ratio between AUV i and AUV j in underwater communica-

tions [21]

aij(t) = SL− TL−NL+DI. (12)

By calculation, the element in the i-th row and j-th column

of LU (t) is defined as follows

LU (t)ij =

⎧⎨
⎩

−aij(t), i �= j, aij(t) ≥ DT∑k=N
k=1,k �=i aij(t), i = j, aij(t) ≥ DT

0. i �= j, aij(t) < DT

(13)

The second smallest eigenvalue of LU (t), denoted as

λ2(LU (t)), is the algebraic connectivity of the graph, which

can describe the connectivity of the graph. The larger

the λ2(LU (t)), the stronger the connectivity, and when

λ2(LU (t)) < 0, it means that the graph is no longer connected.

D. Forward and Inversion of Shaft-Rate Electric Field

We acquire the training dataset by applying the forward

formula to capture shaft-rate electric field at distinct positional

points. Utilizing this dataset, we train the CNN receiving

shaft-rate electric field data as input and generating output

representing the location associated with the shaft-rate electric

field, which enables the inverse of target location. The shaft-

rate electric field generated by horizontal and vertical electric

dipole sources at points (xs, ys, zs) in stratified conducting

media are expressed as [22]

F ′ (xs, ys, zs, x, y, z) = P (xs, ys, x, y)∫ ∞

0

1∑
v=0

fv (σ, zs, z, λ) Jv(λr)dλ,
(14)

where F ′ (xs, ys, zs, x, y, z) represents the shaft-rate electric

field generated by a unit horizontal electric dipole source.

P (xs, ys, x, y) is related to the horizontal position of the field

source, the measuring point, and the dipole moment. Jv(λr)
is a Bessel function of order v equal to 0 or 1, fv(σ, zs, z, λ)
represents the corresponding kernel function, which depends

on the conductivity σ, thickness of the conductive layer, and

the vertical position of the field source and the measurement

point. r =
√
(x− xs)2 + (y − ys)2 is the horizontal distance

between the field source and the measuring point.

Usually, the shaft-rate electric field data is susceptible to

contamination arising from external interference, and such

contamination can be characterized by Gaussian random noise.

The objective function for traditional gradient-based optimiza-

tion under the L2-norm condition is set as follows

φ = ‖W d(d− F (m))‖2 , (15)

where F (m) represents the forward operator, and m is

the model reference vector. d is the inversion data vector,

consisting of the real and imaginary parts of the electric field

components, which are disturbed by the Gaussian random

noise conforming to the normal distribution. In this study,

Gaussian random noise is set as follows

G = A× η × r, (16)

where A is the strength of the electric field, η represents the

added noise intensity, and r ∈ [−1, 1] is a random number.

In addition, W d is the data weighting matrix, which can be

expressed as follows [23]

W d = diag(
1

|di|ri + ηm
); i = 1, · · · , Nd, (17)

where ri is the estimated relative error at ith datum plane.

A small constant ηm corresponding to the noise observation

lower bound of the data is added to prevent the inversion from

overemphasizing the low-amplitude data. And Nd represents

the number of observation data.

III. PROBLEM FORMULATION

In this section, we first model the multi-AUV assisted

seamless underwater target tracking problem as a partially

observable Markov game process (POMGP). Then, the con-

strained optimization objective is presented and the reward

function is designed in detail.
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Fig. 2. The framework of our proposed fusion algorithm for seamless tracking of the underwater target, which includes two stages: underwater target
localization and tracking. In the first stage, shaft-rate electric field data is collected by sensors to generate datasets, which are used to train the CNN to locate
the target’s position. In the second stage, we utilize the MASAC algorithm under centralized training decentralized execution (CTDE) framework to train
multi-AUV to learn optimal policy, aiming to improve target tracking performance.

A. Partially Observable Markov Game Process Modeling

The process of seamless underwater target tracking can be

modeled as a POMGP, which consists of the following tuple

M = (S,O,A, P,R(t), γ, ρ), (18)

where S stands for all possible state spaces of N AUVs,

which represents the global information, while Oi represents

the observation space of AUV i. For AUV i, the action space

is Ai. The state transition function of the environment is

P : S ×A1 × · · · ×Ai → ω(S), while the reward function

of the AUV is R(t) : S ×A → R(t), whose specific design

is given in the following subsection, and γ → [0, 1] is the

discount factor, ρ : S → [0, 1] is initial state distribution.

Besides, AUV i owns the policy πi : Oi×Ai → [0, 1], which

is a probability distribution representing the probability that

the AUV will take each action for each observation. And the

partially observed information of AUV i from the global state

is: oi : S → Oi.

In addition, in the target localization and cooperative track-

ing problem, AUV i will try to make the proper action ai(t)
according to its observation oi(t) and policy πi(ai(t) |oi(t) )
to maximize discount reward J(θi). Based on the above intu-

ition, the constrained optimization objective can be formulated

as

max
πi

J(θi) = max
πi

E

[
T=∞∑
t=t′

γt−t′R(t)

]
, (19)

vmin≤‖vi(t)‖≤vmax, ωmin≤‖ωi(t)‖≤ωmax,∀i∈N, (20)

where θi stands for the policy parameters of the AUV i, while

‖vi(t)‖ ∈ [vmin, vmax] and ‖ωi(t)‖ ∈ [ωmin, ωmax] denotes

the velocity and angular velocity, respectively.

B. Design of Reward Function

The AUV adjusts its policy according to the reward obtained

by the current action, so it is crucial to design an appropriate

reward function. The appropriate reward function should be

designed to guide the multi-AUV to complete the task. Taking

the engineering practice into account, the reward function R(t)
can be divided into the following optimization objectives:

Collision avoidance: To ensure the safety of multi-AUV in

the task, the distance between AUVs and between AUVs and

obstacles should not be less than li↔j
min . To avoid the collision,

we need to set li↔j
min as the safe distance and design the reward

function rA(t) to punish collision

rA(t)=−500 ceil
(
li↔j
min /min(l(t))

)
, ∀i, j≤N, i �=j, (21)

where l(t) = {l1(t), · · · , li(t)} represents the distance vector,

in which li(t) is the distance from AUV i to the nearest

obstacle. And ceil is the integer up function.
Keep tracking: To ensure each AUV sustainably carryout

tracking tasks throughout the whole process, we set li↔T
max as

the target distance and reward AUV i’s tracking results

rT (t) = 1000 ceil(li↔T
max /l

i↔T (t)), i = 1, · · · , N, (22)

where li↔T is the distance between AUV i and the target.
Encourage exploration: Based on the intuition that the

AUVs need to be prevented from randomly wandering when

exploring and interacting in the environment, we use rE to

encourage AUV i to move towards the target

rE(t)=

{
2, li↔T (t− 1) > li↔T (t),
−2, li↔T (t− 1) < li↔T (t),

i = 1, · · · , N .

(23)
Maintain connectivity: Based on the previous analysis, we

can use reward rC(t) to encourage the multi-AUV to maintain

connectivity. When rC(t) is greater than 0, the AUV network

is connected, which can significantly improve the probability

of target tracking, and the higher the value, the better the

connectivity. When rC(t) is less than 0, the AUV network is no

longer fully connected, and the system gets the corresponding

punishment

rC(t) = λ2LU (t). (24)



In summary, weighing all the factors, the total reward

function R(t) can be expressed as

R(t) = εArA(t) + εT rT (t) + εErE(t) + εCrC(t), (25)

where εA, εT , εE , and εc are the weight coefficients corre-

sponding to reward functions rA(t), rT (t), rE(t) and rC(t),
respectively.

IV. TARGET LOCALIZATION AND TRACKING ALGORITHMS

Seamless tracking of the underwater target includes two

sub-tasks: target localization and target tracking. The CNN

is firstly adopted for training based on the collected shaft-

rate electric field data to achieve accurate target localization.

Meanwhile, the MASAC algorithm is further adopted to train

AUVs to learn optimal policies and improve the collaboration

performance of tracking. The proposed algorithm’ framework

is depicted in Fig. 2.

A. Location Inversion Based on CNN

The neural network model used in this study is the CNN,

which can be divided into two parts: the convolutional layer

and fully connected layer. In the convolutional layer, the

maximum pooling layer is set to reduce the amount of data

computation. In the fully connected layer, the input data is

multiplied and added with the parameter bl to add the bias as

the output of this layer, which can be expressed as follows

vk =
∑
k

wklhk + hl, k = 1, · · · , n, l = 1, · · · ,m, (26)

where hk is the hidden layer node (0 < k ≤ n), vk is the

visible layer node (0 < k ≤ m), and wkl is the connection

weight matrix between the visible layer and the hidden layer.

The hidden layer output can be calculated as follows

zl = fa(
∑
k

wklhk + bl). (27)

Then, the softmax layer is set up after the fully connected

layer to convert feature vectors into probability vectors for

multiple data classifications, which is shown as follows

qk =
exp(zk)∑N
l=1 exp(zl)

, (28)

where zk represents the input data to the softmax layer, and qk
denotes the output data from the softmax layer, which satisfies

ΣN
k=1qk = 1. Thus, the simulation of probability is realized.

The softmax layer rear connection cross entropy function is

E = −
N∑
k=1

pk × log(qk), (29)

where pk is the label of the data.

Furthermore, to enforce network nonlinearity, and smooth-

ness aiding in optimization, we employ the activation func-

tion DSoft, which is unbounded above, bounded below, non-

monotonic, and smooth, avoiding saturation and gradient van-

ishing. The DSoft function can be expressed as follows

f(x) = xξ(ln(1 + ex)), (30)

where ξ(x) = x(1+|x|)−1 is the Softsign activation function,

and the derivative of DSoft can be expressed as

f
′
(x) = x−1f(x) + xg(x), (31)

g(x) = (1 + e−x)−1(ln(1 + ex) + 1)−2. (32)

Finally, we utilize the Adam algorithm, an optimizer com-

bining Momentum and RMSProp benefits. By sampling a

minibatch of p examples from the training set {x(1), . . . , x(p)}
with corresponding targets y(n), the gradient can be computed

as

g ← 1

l
∇θ

∑
n

L(f(x(n); θ), y(n)). (33)

Then, update biased first and second moment estimate

λ ← ξ1λ+ (1− ξ1g), (34)

ς ← ξ2ξ + (1− ξ2g)� g, (35)

where ξ1 and ξ2 are the exponential decay rates for monent

estimates, while λ and ς are the first and second moment

variables, respectively, and θ is a parameter that needs to

be initialized. Hence, it is possible to rectify bias in both

the first and second moments through the computation of the

update. The process of achieving the gradient update entails

the repetition of the aforementioned cycle.

B. Multi-Agent Soft Actor-Critic

To successfully complete the multi-AUV seamless target

tracking task, we adopt the MASAC algorithm based on the

CTDE framework to train AUVs to learn optimal tracking

policies. In CTDE, all agents share a centralized critic network,

and when it comes to each agent, it has local actor network to

make decisions ai based on individual observations oi and

then gain reward Rt. Specifically, the goal of RL can be

expressed as a constrained optimization problem{
max πJ(θ)=max πE

[∑T=∞
t=1 R (x,a1, · · ·,aN )

]
,

Eoi∼ρπi ,ai∼πi
(− log πi (ai | oi)) ≥ H0,

(36)

where π, θ and x represent the policies, parameters of the

actor network and observations of all the agents, and can be

expressed as π = {π1, · · · , πN}, θ = {θ1, · · · , θN}, and

x = (o1, · · · ,oN ), respectively. H0 is entropy to help agents

flexibly balance exploration and exploitation. Specifically, the

actor network for each agent can be updated by Eq. (37)

∇θiJ=Eoi∼ρπi ,ai∼πi

[∇θi log πi (ai |oi)Q
πi

Θi
(x,a1, · · ·,aN )

]
,

(37)

where ρπi represents the observation distribution in the case of

policy πi, and Qπi

Θi
(x,a1, · · · ,aN ) denotes the action value

function.

In addition, to address the issue of Q value overestimation,

MASAC utilizes two critic networks, Θ1i and Θ2i , as well as



Algorithm 1: Fusion Algorithm

1 Initialize the replay buffer R, centralized critic

network, target critic network, and actor network

parameters Θ1i , Θ2i , Θ
−
1i

, Θ−
2i

, θi of AUV i.
2 for each epoch k do
3 Reset the training environment and parameters.

4 for each time step t do
5 for each AUV i do
6 Locate the target using trained model of

CNN and shaft-rate electric field data.

7 Sample an action according to the policy:

ai ∼ πi(ai|oi)
8 Obtain reward Rt and the next state x′

from environment.

9 Store tuple (x,a1, · · · ,aN , Rt,x
′) into R

10 end
11 for each AUV i do
12 Extract N tuples of data

(xn,a1n,· · ·,aNn
, Rtn ,x

′
n)n=1,···,N from R.

13 Calculate yn = Rtn + γVΘi(x
′
n)

14 Update critic network by minimizing the

loss function:

L(Θi)=
1

N

∑N

n=1

(
Qπi

Θi
(xn,a1n,· · ·,aNn)−yn

)2
Update actor network using the policy

gradient:

∇θiJ =
1

N

∑N

n=1
[∇θi log πi (ain | oin)

Qπi

Θi
(xn,a1n , · · · ,aNn

)
]

15 end
16 Soft update target network parameters.

17 end
18 end

their respective target networks, Θ−
1i

and Θ−
2i

. Consequently,

the loss function of Q can be formulated as

L (Θ1i) = E(x,a1,··· ,aN ,Rt,x′)∼R[(Qπi

Θ1i
(x,a1, · · · ,aN)−

(Rt + γVΘ−
1i

(x′)))2],
(38)

L (Θ2i) = E(x,a1,··· ,aN ,Rt,x′)∼R[(Qπi

Θ2i
(x,a1, · · · ,aN)−

(Rt + γVΘ−
2i

(x′)))2],
(39)

where R represents the replay buffer to store collected data,

while VΘ−
1i

and VΘ−
2i

represent the state value function with

parameters Θ−
1i

and Θ−
2i

, respectively. To prevent the AUV

i from getting stuck in local optimal policy, we introduce

entropy regularization and express VΘ−
1i

(x′) and VΘ−
2i

(x′) as

follows

VΘ−
1i

(x′) = min
j=1,2

Qπi

Θ−
ji

(x′,a′
1, · · · ,a′

N )−
αi log πi (a

′
1, · · · ,a′

N | x′) ,
(40)

TABLE I
PARAMETERS OF SIMULATION EXPERIMENTS

Parameters Values
AUV number N 2

Max velocity vmax 3.0 m/s
Max acceleration amax 5.0 m/s2

Max angular velocity ωmax 1.6 rad/s
Experimental site size 1 4000m × 4000m
Experimental site size 2 50m × 50m

Initial positions of AUVs (-18.0, 20.5), (-18.0, 17.0)
Initial positions of the target (-14.5, 20.5)

Locations of obstacles (-20,10), (-10,-15), (0,10), (15,-15)

Safe distance li↔j
min 1.5 m

Target distance li↔T
max 2.5 m

Convolution kernel size 4×4(1∼2 layers)/8×8(3∼5 layers)
Stabilization constant σ 10−8

Learning rate λ 3× 10−4

Reward weight coefficients εA=1, εT =1,εE=1,εC=0.01
Discount factor γ 0.99

Soft updating rate η 0.01
Regularization coefficient α 0.2

Training epochs k 100
Replay buffer size R 5× 104

Sample batch size 256
Hidden layer size 256

VΘ−
2i

(x′) = min
j=1,2

Qπi

Θ−
ji

(x′,a′
1, · · · ,a′

N )−
αi log πi (a

′
1, · · · ,a′

N | x′) ,
(41)

where αi stands for the regularization coefficient, determining

the weight placed on entropy in the policy. Subsequently, the

policy’s loss function can be derived from the simplified KL

divergence

Lπi (θi) = Eoi∼ρπi ,ai∼πi [αi log (πi (a1, · · · ,aN | oi))−
min
j=1,2

Qπi

Θi
(x,a1, · · · ,aN )].

(42)

V. SIMULATION RESULTS

In this section, we will verify the outstanding performance

of our proposed fusion algorithm by simulating the whole

process of training, which can be divided into two stages: tar-

get localization and tracking. Finally, the results of simulation

experiments will be described and analyzed.

A. Simulation Settings

In the simulation experiment, the parameters can be divided

into four parts: model parameters, simulation parameters,

localization and track algorithm parameters. The parameters

mentioned in the above are summarily shown in Table I.

B. Experiment Process

The modeling area for simulation experiments is within

the range of 4000m×4000m in the plane, and the seafloor

sensors are placed evenly along x-axis to receive the shaft-

rate electric field signals generated by the underwater targets.

Then, 10% Gaussian random noise is added to the forward-

modeling shaft-rate electric field data as the datasets for target

localization. Finally, the data generated is utilized for the CNN

model training, while contrast experiments are also conducted
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Fig. 4. The accuracy curves of target localization relying on CNN for training,
with the batch size ranging from 1 to 4.

via commonly used Elman and back propagation (BP) models

simultaneously.

As can be seen from the training results shown in Fig. 3, the

accuracy and loss curves of training vary with the number of

epochs, and finally tend to converge, respectively. Compared

to Elman, the training process of the CNN model is apparently

more stable. And the final localization accuracy is up to 97.8%,

which achieves more superior performance than that of both

Elman and BP.

In addition, we also conduct ablation experiments by chang-

ing the data batch size during training and the noise level in

the shaft-rate electric field dataset to compare the performance

and robustness of the algorithm under different conditions. As

depicted in Fig. 4, under the same epoch, with the increase

of batch size, the efficiency of CNN training continuously

improves, and the training process is increasingly stable.

Besides, upon observing Fig. 5, it can be discerned that as

the noise level within the dataset escalates, there is a marginal

decline in training efficiency of the CNN model. However, this

decline does not significantly impair the overall performance,

as the accuracy of localization remains considerably high,
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Fig. 5. The accuracy curves of target localization relying on CNN for training,
with the noise level ranging from 0% to 30%.
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which further demonstrates the outstanding robustness of the

algorithm.

Then in the second stage of simulation, the size of the

experiment site is 50m×50m and the target’s initial position

is uniformly set. The experiment includes two main stages:

localization and tracking. In the localization stage, our goal

is to realize the localization of the target. Preprocessed shaft-

rate electric field data and target position are used for training

and evaluating the performance of the CNN model. With

the increase of the training epochs, accuracy rate and loss

curves rise and decrease, and eventually tend to converge,

respectively.

While the CNN model is well-trained, it will be deployed

on each AUV for the second stage of the experiment. Training

is first carried out by localizing the position of the target.

Assuming that AUVs communicate their positions to each

other in real-time via the base station on the surface, the

MASAC algorithm is used to train two AUVs, tracker 1 and
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Fig. 7. The mean and variance of total reward data for the last 50 epochs
obtained by utilizing PPO, SAC and MASAC for reinforcement learning
training, respectively.

tracker 2, in the underwater scenario with obstacles to learn

an optimal policy for tracking a moving target cooperatively.

When the AUVs approach the target closely, its position is

randomly reset, and the AUVs receive the reward. Due to

the lack of prior experience and trial-and-error process, the

reward curve usually fluctuates as the AUVs interact with

the environment. With the increase of training epochs, the

volatility of the reward curve decreases, indicating that AUVs

have learned a relatively better policy and achieved a stable

return from the environment. In addition, we also conduct

contrast experiments through commonly used soft actor-critic

(SAC) and proximal policy optimization (PPO) algorithms to

train one single AUV for investigating the effect of AUV

number and different algorithms on the performance of target

tracking. As shown in Fig. 6, after training for 100 epochs,

the average total reward of two AUVs via MASAC is almost

double that of one single AUV relying on SAC or PPO, which

highlights the superiority of collaboration between multi-AUV.

Furthermore, through analyzing the outcomes of the three

different algorithms, it has been obvious that in order to attain

a state of convergence, PPO necessitates an extended number

of training epochs when contrasted with MASAC and SAC,

which highlights the superior sample and training efficiency

inherent to MASAC and SAC. In addition, we also compare

the mean and variance of total reward data for the last 50

epochs obtained by utilizing the three different algorithms

in Fig. 7, which further highlights the higher mean reward

and relatively lower variance of MASAC. Consequently, the

findings indicate that employing MASAC for the training of

AUVs leads to enhanced performance in target tracking tasks.

Finally, combined with the trained CNN model, the op-

timal policies are applied for the multi-AUV to realize the

target localization and tracking tasks. The initial positions of

AUVs and target are (−18.0, 20.5), (−18.0, 17.0), (−14.5,

20.5), respectively. And the corresponding final positions are

respectively distributed at (−18.0, −17.0), (−17.0, −21.0) and
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Fig. 8. The trajectories of AUVs and the target in the target localization and
tracking task.

(19.5, −16.0). The trajectories of AUVs and the target are

shown in Fig. 8. Based on the previous description, multi-

AUV successfully completes the task, which demonstrates the

superiority of the proposed fusion algorithm in solving the

problem of seamless underwater target tracking.

VI. CONCLUSION

In this paper, we present a fusion algorithm for multi-

AUV assisted seamless underwater target tracking. Shaft-rate

electric field data is firstly collected to train CNN to invert the

target’s location, and then we formulate the target tracking

task as an POMGP, designing reward functions and using

the MASAC algorithm based on the CTDE framework to

train multi-AUV to learn optimal tracking policies. Simula-

tion results and contrast experiments indicate the outstanding

localization accuracy and target tracking performance. The

localization accuracy achieves 97.8%, higher than that of

Elman and BP, while the total reward obtained via MASAC for

training is higher than that of PPO and SAC, which enhance

multi-AUV to accomplish the seamless target tracking task

and obstacles avoidance, demonstrating the superiority of the

proposed fusion algorithm and collaboration among AUVs.
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