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Abstract—Unmanned underwater vehicles (UUVs) have been
widely used in various ocean applications such as underwater
exploration and data collection. And the underwater pursuit-
evasion game (UPEG) is the key to efficient implementation
of other tasks, holding significant research value. However, the
UPEG task necessitates effective strategy optimization of UUVs in
complex ocean environments, while variable ocean environment
and low intelligence of training methods pose high costs and risks
in the development and verification of UUV control algorithms.
To address above challenge, we propose HPTVSim, a UUV
simulator specifically designed for the UPEG task. HPTVSim
provides a reinforcement learning (RL) environment to train
UUVs for improving the intelligent performance in the UPEG
task. Furthermore, we propose an efficient UPEG training
framework (ETFDU), which includes multi-agent decentralized
training and execution techniques, scene transfer training meth-
ods, and offline RL techniques based on decision transformer, to
facilitate efficient UUV training. Through training on the UPEG
task in HPTVSim, we validate the effectiveness and feasibility of
the simulator and the training framework.

Index Terms—Internet of Underwater Things, unmanned un-
derwater vehicle, pursuit-evasion game simulator, reinforcement
learning, efficient training.

I. INTRODUCTION

INTERNET of underwater Things (IoUT), as an important
part of marine research and resource development, has

received extensive attention [1]. As a powerful promoter of
IoUT, unmanned underwater vehicles (UUVs) can adapt to
the requirements of various IoUT tasks such as environmental
monitoring, data collection [2], and underwater pursuit-evasion
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game (UPEG) [3], due to their flexible and autonomous
characteristics [4]. Among these applications, UPEG is the
key to efficient implementation of other tasks [3]. However,
considering the high maneuverability and unknown escape
strategy of the target and the limited perception ability of
UUV, it is urgent to study the control policy within the UPEG
between multiple UUV and the escape target [3]. Therefore,
autonomous control of UUV has become a hot research field.
The reliable and efficient autonomous control technology of
UUV involves many fields such as motion planning, intelligent
perception, autonomous decision-making, etc., and the core
challenge is to efficiently perform tasks in the complex and
unknown underwater environment, which makes the decision-
making process of UUV full of challenges. Nevertheless, it
is dangerous and inefficient to conduct experiments in real
environments. On the one hand, a UUV needs to be tested in
various typical and dangerous scenarios to verify the feasibility
of the algorithm, and testing directly in the harsh marine
environment will face serious safety problems. On the other
hand, when the UUV needs to add new sensors or update the
configuration, it needs to be recalibrated and debugged, which
is time consuming and costly [5].

Simulators are considered to be risk-free and reliable tools
that can provide different test scenarios and obtain a large
amount of test data, which makes the design and verification
process of robots more efficient and economical, and has
achieved great success in various applications of space-based
robots and land-based robots in recent years. For example, Mo
et al. [6] developed Terra, an autonomous vehicle simulation
framework, to guide it to navigate efficiently in complex
environments. Dai et al. [7] developed the simulation platform
RFlySim for different types of unmanned aerial vehicles
(UAVs), aiming to improve the development efficiency of
UAVs and ensure the safety of testing. In [8], the authors
developed a virtual prototype environment for vehicle system
modeling and simulation to assist designers to make the
best design and explore vehicle safety issues. In contrast,
UUV simulation technology has progressed slowly because
underwater scenarios are less attractive and it is difficult to
simulate the interaction between the marine environment and
underwater vehicles.

Although there are some underwater simulation platforms
[9]–[13], they are developed for simple tasks and cannot be
extended to complicated UPEG task due to the following
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main challenge: low intelligence. To address this challenge,
the development of more advanced simulators that enable
the UUVs to adaptively learn and optimize their behavior
strategies is necessary.

Some interesting work has proposed feasible solutions to
the above challenge. In [14], the authors proposed a simulation
platform that can simulate the intervention tasks of underwater
vehicles, laying the foundation for the realization of a general
and intelligent UUV simulation platform. However, the plat-
form lacks the intelligence to test multi-UUV collaboration
tasks and is not easy to apply to the UPEG task. In order
to enhance the scalability of the simulator, Zhang et al. [15]
developed a modular UUV simulation platform based on the
robot operating system (ROS) and the robot simulator Gazebo,
which modularized the sensor, simulation environment, UUV
model and programming interface to support intelligent UUV
formation control. However, the Matlab-enabling simulator
greatly limits the scope of application and is not equipped
with advanced learning-based control algorithms for further
intelligence enhancement. In recent years, reinforcement learn-
ing (RL) has been successful in complex tasks for different
types of robots, such as manipulation [16], navigation [17],
planning [18], [19], and interaction [20]. And RL’s adaptability
to uncertain environment and is believed to be a powerful
tool to improve the UUV intelligence. However, using RL
algorithms to train UUVs in underwater environments often
presents challenges such as low sampling efficiency, poor
training stability, and safety issues. Therefore, how to better
employ RL to realize multi-UUV training, especially for the
UPEG task, has become a new research topic.

Furthermore, it is notable that research on RL-enabled
UPEG approach and simulator is still in its nascent stages due
to the intricate underwater environment and the challenges in
strategies optimization in the presence of dynamic interactions.
Sun et al. utilized the multi-step Q-learning algorithm to
realize multi-UUV cooperative UPEG, while addressing the
challenges posed by ocean currents and obstacles in complex
underwater environments [21]. Yu et al. introduced Nash
equilibrium into the RL training of multi-UUV, while using
dynamic extended form game. And then the pursuit UUVs
in the UPEG task are decomposed from many-to-one game to
one-to-one game, which reduces the computational complexity
[22]. However, prior research has predominantly focused on
the UPEG algorithms, leading to a notable imbalance in UPEG
dedicated simulator studies. Additionally, the aforementioned
algorithms are heavily dependent on substantial prior infor-
mation. Without this information, the performance of these
model-based methods significantly deteriorates.

Based on the above analysis, this paper developed
HPTVSim, a simulator for UUVs dedicated in the UPEG task,
aiming to improve the intelligence of UUVs to efficiently
complete the UPEG task. Our main contributions can be
summarized as follows:

• To the best of our knowledge, this is the first UUV
simulator that is dedicated in the UPEG task, which
provides a tailored RL environment to realize intelligence
enhancement for UUVs to complete the UPEG task.
It significantly improves the training intelligence of the

TABLE I
MAIN SYMBOLS AND EXPLANATIONS.

Symbols Definition
MR Inertial matrix
MA Additional mass matrix
CR Centrioforce matrix
CA Coriois centripetal force matrix

D (vr) Damping matrix
G0 restoring forces of gravity
G(η) restoring forces of buoyancy
τ Input control force and torque
vr Relative velocity vector
η Pose vector

Q1
i , Q2

i Two action value functions
πθi Policy function

Θ1
i , Θ2

i Critic networks
Θ̃1

i , Θ̃2
i Corresponding target networks

LQ1
i

, LQ2
i

Loss function of Q1
i and Q2

i

Lπθi
Loss function of the policy

L (∂i) Loss function of the regularization coefficient
Di Replay buffer

VΘ̃1
i
(·), VΘ̃2

i
(·) State value functions

∂i Regularization coefficient
π∗ Expert policy
τi Offline dataset
κ Soft updating rate
λ Learning rate
∇ Gradient
r̂ti Returns-to-go

LMSE Mean-squared error
T Maximum number of control time steps
γ Discounting factor

Si, si State space and state
Ai, ai Action space and action

vi(t), ωi(t) Velocity and angular velocity
vmin, ωmin Minimum velocity and minimum angular velocity
vmax, ωmax Maximum velocity and maximum angular velocity

ri Reward function
li↔j
min , li↔T

max Safe distance and target distance

simulator, and gets superior feasibility and performance
in the UPEG task.

• To progressively accomplish the UPEG task and intel-
ligence enhancement, we propose an efficient training
framework dedicated for UPEG (ETFDU), which in-
cludes multi-agent independent SAC (MAISAC) with de-
centralized training and decentralized execution (DTDE)
technology, scenario transfer training (STT) technol-
ogy, and decision transformer (DT)-based offline RL
technique. This comprehensive framework significantly
boosts the simulator’s training capabilities in the UPEG
task.

• Simulation experiments demonstrate the superior perfor-
mance of our proposed training techniques in the UPEG
task, thereby proving the effectiveness of the ETFDU
framework. Analysis of the influence of maximum ve-
locity, maximum angular velocity, and entropy regular-
ization coefficient further demonstrates the adaptability
and robustness of the proposed methods. Above results
validate the feasibility of UUV training using our pro-
posed HPTVSim.

The rest of this paper is organized as follows. In Section
II and III, the related work and framework of HPTVSim
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are given in detail. In Section IV, the modeling of UPEG,
framework of ETFDU, and several RL training techniques are
presented. In Section V, simulation experiments are carried
out to verify the feasibility of HPTVSim for training UUVs
to complete the UPEG task, followed by the conclusion in
Section VI. Explanations of the symbols mainly used in this
paper are listed in Table I.

II. RELATED WORKS

The SWARMs project funded by the European Union first
focused on the development of underwater simulators, and
developed the simulator UWSim [29] based on the graphics
engine OpenSceneGraph [30], which can realize the basic
configuration of underwater scenarios, vehicles and objects.
However, XML description files need to be written frequently
to set up new simulations, which is not user-friendly. Thanks to
long-term open source and maintenance, Gazebo is considered
to be the best physics engine for simulating all kinds of robots.
In [14], based on Gazebo and UWSim, UUV simulator is
developed to simulate multiple underwater navigation inter-
vention tasks, this simulator has a certain degree of integration,
but it cannot be applied to specific tasks. Nie et al. combined
the Unity3D simulation engine with fluid mechanics software
to simulate the working state of UUV. However, this platform
has limited versatility in scenarios such as shallow seas and
complex seabeds [32]. To sum up, existing simulators cannot
achieve a good balance in terms of ease of use, generality and
environmental modeling.

RL methods can collect data through interaction with
the environment to train robots to solve various complex
practical problems in the absence of prior information and
solutions [33], [34]. Creating RL environments with simulators
is currently a hot research topic due to realistic physical
approximations and the ease of transferring policies to real-
world robots. Unfortunately, only FishGym [28] has developed
a RL module for underwater simulator, but this RL module is
only specially designed for the attitude control of bionic fish.
In addition, gym-pybullet-drones [38], Panda-gym [39] and
other RL frameworks used for various kinds of robots do not
support multi-robot learning research and only support limited
RL categories, which greatly restricts the development.

Currently, the prevalent methods for UPEG include neural
networks [25], control models [26], and game theory [27].
In [40], a particle swarm optimization algorithm was utilized
for real-time rescue assignments in multi-AUV systems. In
[41], [42], game theory was employed to analyze interactions
between multi-AUV systems and targets, resulting in the
development of hunting strategies. Nonetheless, in real-world
scenarios, these model-based multi-AUV control strategies
require real-time adjustments of control parameters, making
them unsuitable for the highly dynamic underwater environ-
ments. Multi-AUV control strategies based on multi-agent
reinforcement learning (MARL) have demonstrated superior
performance in UPEG. Wei et al. introduced a MARL strategy
for multi-AUV underwater target hunting tasks grounded in
differential games [43]. Xia et al. developed an end-to-end
MARL framework for multi-agent target tracking, enhancing

Simulator layer High-level control layer Low-level control layer

UUV entity

Environment

InteractionReal-time

Sensors
Plugin

Dynamic
model

UUV 1 UUV 2 UUV n

Task Env Robot Env

Gazebo Env

Underlying
Controller

State
Estimator

Low-level
Sensors

Fig. 1. Illustration of the framework of HPTVSim, which is mainly divided
into simulator layer, low-level control layer and high-level control layer.

the success rate of target acquisition [44]. However, these
MARL-based approaches suffer from issues such as unstable
training and low sampling efficiency, which hinder the training
of an effective hunting model.

Based on above analysis, there is currently no simulator for
UUVs dedicated in the UPEG task, integrating training intel-
ligence with RL environment. Thus we propose HPTVSim,
a simulator for UUVs dedicated in the UPEG. Due to its
highly-compatible programming interface, HPTVSim has the
potential to be applied to a wider range of RL tasks.

III. HPTVSIM FRAMEWORK

In this section, we first introduce the overall framework of
HPTVSim, and then describe the construction of 3D underwa-
ter scenario, UUV models and sensors, environmental loads,
and UUV dynamics of HPTVSim.

A. The Overall Framework

The overall framework of HPTVSim is shown in Fig. 1,
which is mainly divided into simulator layer, low-level con-
trol layer, high-level control layer and reserved programming
interface, all of which support secondary development and
customization. The Gazebo-based simulator layer is mainly
responsible for creating UUV simulation entity and virtual
scenario. The UUV entity contains dynamic models and sensor
plugins. The low-level control layer mainly contains core
functions such as state estimation and underlying controller.
The high-level control layer is connected to the programming
interface and supports multi-agent tasks. These three layers
communicate internally to subscribe information and issue
commands. In addition, referring to the work in [45], we
develop RL environment in our simulator by combining RL
algorithms with Gazebo and ROS. It mainly includes Gazebo-
Environment class (GazeboEnv), Robot-Environment class
(RobotEnv) and Task-Environment class (TaskEnv). Gaze-
boEnv is connected to Gazebo and can reset, pause, and
resume simulations. The RobotEnv, inherited from GazeboEnv,
handles the UUV’s information and controls it. TaskEnv,
inherited from RobotEnv, contains the main elements needed
for RL to determine the task structure that the agent needs to
learn.
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(a) (b)

Fig. 2. Seabed terrain construction process via Blender and Gazebo. (a)
The seabed terrain modeled by original height map in Blender. (b) The
visualization of seabed terrain rendered using Blender.

B. Construction of 3D Underwater Scenario

The fidelity of the virtual ocean environment directly affects
the accuracy of the simulation, and the key is to accurately
depict the seabed, whether it is to support bathymetry missions
or just to make the scenario look more realistic. With several
realistic Gazebo worlds already available in UUV Simulator,
this work chooses the Ocean Waves World [14] with wave
shaders for secondary development, focusing on accurate
modeling of the seabed based on real ocean environment data.

The challenge of constructing a 3D underwater scenario is
to accurately model the seabed according to real terrain data.
Our seabed modeling process is as follows: first, the Anaconda
ogr2ogr library is used to view the hierarchical information of
the S-57 chart and perform non-visual processing operations,
including format conversion [15]. Then the vector data is
converted into raster data by QGIS or Arcmap software and
the terrain file (.tif file) is obtained. This is then converted
into a height map (.png file) using Global Mapper software.
In addition, the resolution of the pixel is modified to improve
the precision of the generated terrain, and the blank area is
interpolated. The derived height map is then imported into
Blender for modeling the terrain and applying realistic textures
to the model. The render result (.dae file) is then exported to
ROS along with the texture (.jpg file). In ROS, these files are
integrated and the terrain is saved as a .world file via Gazebo.
Finally, the configuration file is manually edited to introduce
rigidity parameters to simulate accurate collision effects within
the Gazebo simulation environment. The visualization process
is delineated in Figs. 2(a) and 2(b).

C. UUV Models and Sensors

The model of UUV entity can be produced by software such
as SolidWorks or directly use existing open source vehicle
models. To be specific, SolidWorks is first used to model the
size, material, and shape of the underwater vehicle body, and
then, the layout of the relevant actuators is carried out. After
that, the CAD model is exported into stl and dae files and
based on which the xacro file is written. Finally, this UUV
model can be created in Gazebo by converting the xacro file
to URDF file [15]. To meet different mission requirements, our
simulator is equipped with two vehicle models, the work-class
UUV and spherical UUV, as shown in Fig. 3. In this study, the
work-class UUV and spherical UUV, which respectively have

(a) (b)

Fig. 3. Two models equipped in HPTVSim. (a) The work-class UUV, which
is suitable for underwater operations. (b) The spherical UUV for exploration
in narrow spaces.

AUV 1

AUV 2

highest

highest

Fig. 4. Illustration of the azimuth and time delay estimation.

superior thruster performance for straight sailing and swerving,
is set to achieve a higher maximum linear and angular velocity,
respectively [14].

The appropriate sensors need to be fitted to the UUV for
sensing the environment and motion planning. The sensors
embedded in our HPTVSim are sonar and long linear array
sensor. And they employ the flow correlator and spatial period
graph as estimators to determine the environmental informa-
tion. Specifically, the flow correlator carry out the following
computations on each received sonar signal X [n] to determine
time delay Di:

J [Di] =

Di+M−1∑
n=Di

X [n]S[n−Di], 0 ≤ Di ≤ N −M, (1a)

D̂i = argmax [J [Di]] , (1b)

where N and M denote the total length and sampling length
of transmitted signal S[n].

Besides, spatial period graph is utilized via the following
computations on each received array sensor signal to estimate
azimuth β:

Ps(β)=
1

M

(
|
M−1∑
n=0

X [n] exp [−j2π(F0
d

c
cosβ )n ] |

)2

, (2a)

β̂ = argmax [Ps (β)] , (2b)

where F0 denotes the frequency of transmitted signal, while
d represents the interval between sensors. Besides, c indicates
the speed of underwater acoustic signal propagation, while A
and ϕ are unknown signal amplitude and phase, respectively.
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In addition, all sensors share a common error model based
on the first-order Gauss-Markov equation

s = y + n+Gs, (3a)

ṅ = −1

τ
+Gb. (3b)

According to the above formula, the sensing signal s at time
t consists of real signal y, current bias n and additive noise
Gs. Gb describes the random drift characteristic related to the
time constant τ .

D. UUV Dynamics
The dynamic system of the UUV is highly correlated with

the control system, which directly determines the accuracy of
the simulator. According to Fossen’s motion equation [14],
the dynamic system model considering hydrodynamics and
hydrostatic forces can be expressed as

η̇ = J (η)vr, (4)

(MR +MA)v̇r + (CR (vr) +CA (vr))vr+

D (vr)vr +G0 +G(η) = τ ,
(5)

where MR and MA denote inertial matrix and additional
mass matrix, respectively, and CR and CA represent centrio-
force matrix and Coriolis force matrix, respectively. D (vr) is
the damping matrix describing viscous hydrodynamic force,
and G0 and G(η) are the restoring forces of gravity and
buoyancy, respectively, while τ is the input control force and
torque. Finally, vr represents the relative velocity vector and
η stands for the pose vector. Assume αo denotes the UUV’s
yaw angle, we can define J (η) as the transformation matrix,
and we have

J (η) =

 cosαo − sinαo 0
sinαo cosαo 0
0 0 1

 . (6)

For the convenience of investigation, in this we simplify
the motion of six degrees of freedom into on the plane with
a fixed depth. The motion equation of a rigid body with three
degrees of freedom is defined by default as

MRv̇ +CR(v)v +G0 = τ g, (7)

where τ g is external force and torque, which can be calculated
by using related plugins. To facilitate Gazebo to integrate the
motion equation shown in Eq. (7), it is necessary to modify it
with reference to Eq. (5), that is, all relevant terms in Eq. (5)
are moved to the right to correct τ g , as shown in Eq. (8)

τ g = τ −MAv̇r −CA (vr)vr −D (vr)vr −G(η). (8)

IV. PROBLEM DESCRIPTION AND TRAINING TECHNIQUES

In order to verify the feasibility of HPTVSim for training
UUVs, we take the UPEG task as the specific task. And in
this section, we first describe the modeling of UPEG, and then
introduce the designed state space, action space and reward
function for RL training. Furthermore, training techniques
embedded in HPTVSim, such as multi-agent DTDE, STT and
offline RL training based on decision transformer are detailed.
Finally, based on these training techniques, we propose a
new RL training framework named ETFDU, and the overall
framework is described in detail.

A. Underwater Pursuit-Evasion Game Modeling

Considering the dynamic and changeable underwater envi-
ronment and the complexity of tasks performed by UUVs,
traditional model-based control methods are unable to imple-
ment efficient and accurate control of UUVs, especially in
the face of high-dimensional NP-hard problems with multi-
ple constraints and multiple optimization objectives, and the
traditional methods cannot solve the optimal solution. RL is a
potential solution to train UUVs for complex underwater tasks.
In this paper, an UPEG task is constructed to demonstrate the
power of our proposed simulator and training methods. For the
convenience of research without losing the rigor, the UUVs
and the target are considered carrying out the UPEG task on
the plane with a fixed depth d. In the UPEG task, We consider
the scenario of the UPEG task utilizing the IoUT network
composed of buoys on the sea surface and sensor nodes laid
on the seabed. The buoys can communicate with shore-based
stations or satellites through electromagnetic signals to obtain
their location and time reference [49], while the sensor nodes
utilize acoustic communication to directly interact with the
buoys for self localization and clock synchronization [50].
During the whole UPEG process, the position of the target
can be captured by sensor nodes or buoys and reported to
UUVs via acoustic communication methods [51].

We use RL algorithms to train UUVs for navigation and
pursuing the moving target (spherical robot) in the complex
underwater environment with realistic terrain, and meanwhile
to train the moving target to avoid being pursued by UUVs. In
RL, agents learn policies for specific tasks through repeated
interactions with the environment. Given a state si, RL tries
to learn a parametric policy πθ to produce an action ai. The
agent can take this action to move to the next state si+1 and
evaluate the reward ri in that state. The agent iterates the
transformation until one of the exit conditions is met, such as
a limited time span or the success/failure of a specific task.
The parametric policy πθ is learned by finding the optimal
parameter θ∗ that maximizes the expected total reward

J (θ) = Eτ∼pθ(τ)

[
T∑

t=0

γtrt

]
, (9)

where T is the maximum number of control time steps, γ
represents the discounting factor, and τ denotes the sampled
trajectory containing a sequence of states and actions. In the
following, we specify in detail the specific designs on how we
train the UPEG task.

The process of the UPEG task can be modeled as a
Markov decision process (MDP), which can be formulated by
a quintuple [52]

M = (S,A,P,R, γ), (10)

where S, A, R represent state space, action space and
reward function, respectively, while P denotes state transition
probability distribution, and γ is discount factor ranging from
0 to 1.
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Given that there are total N agents in the environment, so
we can respectively represent state space, action space and
reward function as follows

S = [S1,S2, · · · ,Si−1,Si], (11)

A = [A1,A2, · · · ,Ai−1,Ai], (12)

R = [r1, r2, · · · , ri−1, ri], (13)

where Si, Ai and ri denote the state space, action space and
reward function of the ith agent, respectively.

To be specific, the details of the designed state space, action
space and reward function are detailed as follows:

1) State Space Si: We consider that each agent’s state is
observable, and the state of the ith agent, si(t), belongs to the
state space Si, which can be represented as

si(t)=
[
li(t), l(p−e)i(t),min(li(t)) , αoi(t), α(p−e)i(t)

]
,
(14)

where li (t) represents the distance detected by the sonar in the
surroundings, while l(p−e)i

(t) denotes the distance between
the ith agent and the target if the ith agent is a UUV to track
the target, or the distance between the nearest UUV and the
target if the ith agent is the target. Additionally, αoi(t) and,
α(p−e)i

(t) represent the yaw angle of the ith agent and the
orientation angle from the UUV to the target, or the orientation
angle from the target to the nearest UUV, respectively.

2) Action Space Ai: The ith agent selects its next action
ai(t) from action space Ai at each step, guided by environ-
mental feedback and its motion model

Ai = [vmin, vmax]× [ωmin, ωmax] , (15)

ai(t) = [vi(t), ωi(t)] . (16)

3) Reward Function ri: The agent updates its policy based
on action and corresponding rewards, necessitating a reward
function that balances obstacle avoidance and pursuit-evasion
for UUVs and the target.

Collision avoidance: For safe pursuit and evasion between
UUVs and the target, a minimum safe distance li↔j

min must be
established to prevent collisions, introducing the design of the
reward function rCi

(t)

rCi
(t)=−400 ceil

(
li↔j
min/min (li(t))

)
,∀i, j≤N, i ̸=j, (17)

where ceil(x) is the binary function, which means that ceil(x)
is equal to 1 when x ≥ 1, and equal to 0 when x ≤ 1, while
N represents the number of agents.

Encourage tracking: Leveraging reward signal rE1 i, we
motivate UUVs to navigate purposefully towards the target
and guide the target to the target point

rE1 i(t)=

{
0.25, li↔T (t−1) > li↔T (t),
−0.25, li↔T (t−1) < li↔T (t),

i=1, . . . , N.

(18)
To preserve consistent performance of each UUV through-

out the navigation process, we establish li↔T
max as the target

distance, allocating rewards according to each UUV’s tracking
outcomes:

rE2 i(t) = 900 ceil
(
li↔T
max /l

i↔T (t)
)
, i = 1, . . . N, (19)

where li↔T signifies the distance between the UUV and target
for each UUV to track the target, while represents the target’s
distance to the target point for the target.

To summarize, the total reward ri(t) can be represented as
follows

ri(t) = δCrCi
(t) + δE1

rE1 i(t) + δE2
rE2 i(t), (20)

where δC , δE1
, and δE2

represent the weight coefficients as-
sociated with the respective reward functions rCi (t), rE1 i (t)
and rE2 i (t).

B. Multi-Agent Decentralized Training with Decentralized Ex-
ecution Technique

Traditional RL algorithms cannot adapt to the UPEG task
considered in this paper. Considering that soft actor-critic
(SAC) can naturally balance exploration and exploitation
compared with other popular RL methods such as proximal
policy optimization (PPO) and deep q-network (DQN), it can
realize efficient learning in a wide range of tasks [53]. So
we extend the SAC algorithm to multi-agent independent
SAC (MAISAC) via DTDE to train UUVs in parallel and
independently, enabling them to perform their own tasks in
the unknown dynamic environment. In MAISAC, UUV i has
two action value functions Q1

i and Q2
i , and a policy function

πθi . To tackle the challenge of Q value overestimation, we
employ a pair of critic networks denoted as Θ1

i and Θ2
i , along

with their corresponding target networks Θ̃1
i and Θ̃2

i . Opting
for the network exhibiting a lower Q value serves to alleviate
the overestimation issue. Consequently, the loss functions of
Q1

i and Q2
i are denoted as

LQ1
i
(Θ1

i ) = E(st,at,rt,st+1)∼Di

[
1

2
QΘ1

i
(st,at)−

(
rt + γVΘ̃1

i
(st+1)

)]2
,

(21)

LQ2
i
(Θ2

i ) = E(st,at,rt,st+1)∼Di

[
1

2
QΘ2

i
(st,at)−

(
rt + γVΘ̃2

i
(st+1)

)]2
,

(22)

where Di denotes the replay buffer, VΘ̃1
i
(·) and VΘ̃2

i
(·) are

the state value functions parameterized by Θ̃1
i and Θ̃2

i , re-
spectively. To prevent the UUV i from becoming trapped in
local optimal policy, we introduce entropy regularization and
represent VΘ̃1

i
(st+1) and VΘ̃2

i
(st+1) as follows:

VΘ̃1
i
(st+1)=min

j=1,2
QΘ̃j

i
(st+1,at+1)−∂ilog(πθi(at+1|st+1)), (23)

VΘ̃2
i
(st+1)=min

j=1,2
QΘ̃j

i
(st+1,at+1)−∂ilog(πθi(at+1|st+1)), (24)

where ∂i is the regularization coefficient, determining the
weight placed on entropy in the policy. Subsequently, the loss
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Fig. 5. Schematic diagram of the STT method, which illustrates training
agents from the source scenario to the target scenario.

function for the policy can be derived from the simplified KL
divergence

Lπθi
(θi) = Est∼Di,at∼πθi

[
∂i log (πθi (at | st))−

min
j=1,2

QΘj
i
(st,at)

]
.

(25)

To address the issue of non-differentiability when sampling
actions from the Gaussian distribution N the reparameteri-
zation trick is introduced, allowing the policy function to be
expressed as at = fθi (ϕt; st), where ϕt represents a noise
random variable. By considering two action value functions
simultaneously, the policy’s loss function is

Lπθi
(θi)=Est∼Di,ϕt∼N

[
∂i log(πθi(fθi(ϕt; st)|st))−

min
j=1,2

QΘj
i
(st, fθi (ϕt; st))

]
.

(26)

To automatically adjust the entropy regularization term, the
goal of RL can be reformulated as a constrained optimization
problem

max
πθi

Eπθi

[∑
t

rt

]
s.t.Est∼Di,at∼πθi

[−log(πθi(at | st))]≥H0.

(27)
More intuitively, the objective is to maximize the expected

total reward while ensuring that the entropy mean exceeds H0.
By simplifying Eq. (29), we can derive the loss function for

L (∂i) = Est∼Di,at∼πθi
[−∂i log (πθi (at | st))− ∂iH0] .

(28)
The Eq. (29) and Eq. (30) imply that if the policy entropy

is below the desired value H0, the training target L (∂i)
will raise the value of ∂i. Consequently, it will amplify the
significance of the corresponding term in the policy entropy
during the process of minimizing the loss function Lπθi

(θi).
Conversely, if the policy entropy exceeds H0, L (∂i) will lower
∂i, thereby directing the policy training towards prioritizing
value improvement.

C. Scenario Transfer Training Method

For RL module in HPTVSim, to overcome the problems
of insufficient reward accumulation sparse reward and slow
learning convergence, the STT method is proposed to assist the
training of agents in the complex scenario, and its schematic
diagram is shown in Fig. 4. To be intuitive, before training
agents in the target scenario, it is necessary to train it first
in the source scenario and transition scenarios, which are
from easy to difficult and similar to the target scenario,
to accumulate experience and gradually help agent realize
policy improvement. The model obtained after training in the
previous scenario is stored in the memory and loaded into the
next scenario as the basic model, and the parameters of the
model will be updated in the training process at next stage.

D. Offline RL Training Based on Decision Transformer

Offline RL algorithms enable agents to realize policy
improvement via the existing dataset to accomplish related
tasks without interacting with the environment, which further
reducing time and computing costs. Among these algorithms,
DT acts as a significant method to abstract offline RL prob-
lems into seq2seq problems, which is also embedded in our
proposed HPTVSim, and is mainly based on transformer
architecture. According to [54], transformer consists of stacked
self-attention layers with residual connections. Each self-
attention layer receives n embeddings {xi}ni=1 corresponding
to unique input tokens, and outputs n embeddings {zi}ni=1,
preserving the input dimensions. This is achieved by mapping
tokens to key (ki), query (qi), and value (vi) through linear
transformations. The self-attention layer calculates the output
for each token by weighting values based on the dot product
between query and key. This mechanism establishes associa-
tions between states and returns by assigning “credit” based
on similarity

zi =

n∑
j=1

softmax
(
{< qi, kj′ >}nj′=1

)
j
· vj . (29)

E. Description of Our Proposed Training Framework

Due to the inability to adapt to the highly dynamic UPEG
environment, traditional RL algorithms have shortcomings
such as low training efficiency, poor scalability, and complex
calculation when solving the constrained optimization problem
in the previous section. Therefore, we propose the efficient
training framework dedicated for UPEG, which is also named
ETFDU. The diagram of the overall framework is depicted
in Fig. 5, while the pseudo-code is shown in Algorithm 1.
Firstly, the MAISAC algorithm and STT method are utilized
for parallel and independent training of UUVs and the target,
so that they can realize policy improvement efficiently and
perform their own tasks in unknown dynamic environment.
Then, we designate the optimal policy solved by Eq. (29)
as the expert policy π∗ for UUV i to interact with the
environment for data collection, and all trajectories are saved
as the offline dataset, defined as τi

τi = (r̂1i , s1i ,a1i , r̂2i , s2i ,a2i , . . . , r̂Ti , sTi ,aTi) , (30)
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Fig. 6. The overall framework of ETFDU in HPTVSim. Firstly, the MAISAC algorithm and STT method are utilized for parallel and independent training of
UUVs, so that the UUVs can perform their own tasks in unknown dynamic environment. Then, the DT model is trained based on the obtained offline dataset
to achieve policy improvement for each UUV in the UPEG.

Algorithm 1 ETFDU Framework
1: Initialize the training environment, including the replay

buffer Di, critic network and corresponding target net-
work, policy network parameters, entropy regularization,
and soft updating rate Θ1i , Θ2i , Θ̃1i , Θ̃2i , θi, ∂i, κ of
UUV i. And in the following steps, the symbol ∼ means
sampling.

2: for each episode k do
3: Reset the training environment and total reward.
4: for each time step t do
5: Sample an action according to the policy:
6: ati ∼ πθi (ati |sti);
7: Collect the next state from environment:
8: st+1i ∼ P(st+1i |sti ,ati);
9: Calculate reward rti by Eq. (17) - Eq. (20);

10: Store sampling tuple (sti ,ati , rti , st+1i) into Di.
11: Extract N batches tuple of data from Di.
12: Θji ← Θji − λΘji

∇Θji
JΘji

(Θji) , j = 1, 2.
13: θi ← θi − λθi∇θiJθi (θi).
14: ∂i ← ∂i − λ∂i

∇∂i
J∂i

(∂i).
15: Θ̃ji ← κΘji + (1− κ)Θ̃ji , j = 1, 2
16: end for
17: end for
18: Repeat step (2) to step (17) via STT method from the

source scenario to the target scenario.
19: Collect trajectories from the offline dataset τi using expert

policy by Eq. (27).
20: Sample n batches of sequence length K from the offline

dataset τi.
21: for each gradient step j do
22: Update the models of Decision Transformer by Adam

updating on θ′i on LMSE (θ′i) via Eq. (32).
23: end for

where r̂ti =
∑T

t′=t rt′i stands for returns-to-go of UUV i.
Then, the DT model is trained based on the obtained offline

dataset to achieve policy improvement for each UUV in the

UPEG. The trained DT model can be used to predict the
real-time action of each UUV based on the initial state and
expected returns-to-go. The optimal policy of DT can be
obtained according to the Eq. (33)

max
πθ′

i

J ′ (θ′i) = max
πθ′

i

E

[
T=∞∑
t=1

rti

]
, (31)

where πθ′
i

denotes policy of UUV i, and θ′i denotes the
parameters of the policy, which depends on the model training
via DT.

By giving the initial returns-to-go, the prediction head
corresponding to the input token si(t) is trained to predict
action âi(t) with mean-squared error LMSE for continuous
actions. So the model training objective is to minimize the
error, which is shown in Eq. (34)

max
πθ′

i

J ′(θ′i)=min
πθ′

i

LMSE(θ
′
i)=min

πθ′
i

− 1

N

N∑
j=1

(aj−âj)
2

. (32)

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we first introduce the experiment settings
for the simulation experiments, and then experiment results
and discussions are detailed to verify the practicality and
effectiveness of HPTVSim.

A. Experiment Settings

The experiment settings mainly include two parts, such
as the simulation environment parameters and the algorithm
parameters. In the simulation, according to their different
characteristics, the UUV has more straight-line traveling ca-
pacity, but less maneuverability, while the spherical robot is
just the opposite. Based on the above analysis, the UUV’s
maximum velocity is set to 3.0 m/s [14], [15], which is
1.0 m/s higher than the spherical robot. On the other hand,
the spherical robot’s maximum angular velocity is set to 3.0
rad/s, which is 1.5 rad/s higher than the UUV. Moreover,
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TABLE II
PARAMETERS OF SIMULATION EXPERIMENTS.

Parameters Values
Max velocity (UUV) 3.0 m/s

Max velocity (Spherical robot) 2.0 m/s
Max angular velocity (UUV) 1.5 rad/s

Max angular velocity (Spherical robot) 3.0 rad/s
Experimental site size 400 m× 300 m

Safe distance li↔j
min 15 m

Target distance li↔j
max 25 m

Learning rate λ 3× 10−4

Discount factor γ 0.99
Soft updating rate κ 0.01

Initial regularization coefficient ∂ 0.1
Replay memory capacity C 5× 105

Sample batch size B 256
Maximum steps per episode T 6000

Time step per episode ∆t 0.25
Training episodes ε 100
Hidden layer size 256

Number of steps per iteration 5000
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Fig. 7. Average total reward curves of the UUV for different scenarios
changing from the source scenario (STT 1) to the target scenario (STT 2),
which utilizes MAISAC and IPPO for policy improvement via STT method.

the size of the experiment site is 400m×300m, while safe
distance li↔j

min is set to 15m, and target distance li↔j
max is set

to 25m. During each episode, a maximum of 6000 steps
(T ) are allowed, with a simulation time step (∆t) of 0.25s.
Besides, the implementation of ETFDU framework incorpo-
rates two stages. In the first stage, the MAISAC algorithm
is employed to optimize the policy and critic networks. To
facilitate network updates, a soft update coefficient (κ) of
0.01 is utilized, while the regularization coefficient of entropy
(∂) is initialized to 0.1. For efficient training, the batch size
for network parameters updating is set to 256. In terms of
network architecture, a hidden layer size of 256 is utilized.
In the second stage of ETFDU, DT is employed, and the
parameters are mainly referenced to [55]. Other parameters
and parameters mentioned above are detailed in Table II for a
summary.
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Fig. 8. Average total reward curves of the spherical robot for different
scenarios changing from the source scenario (STT 1) to the target scenario
(STT 2), which utilizes MAISAC and IPPO for policy improvement via STT
method.
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Fig. 9. Average total reward curves of the UUV for different scenarios
changing from the source scenario (STT process 1) to the target scenario
(STT process 2), which utilizes MAISAC for policy improvement via STT
method, with vmax ranging from 3.000m/s to 3.500m/s.

B. Experimental Results

According to ETFDU, we first conduct experiments via STT
successively in two different scenarios, such as the source
scenario and the target scenario. The source scenario consists
of an ideal ocean floor with a flat terrain, while the target
scenario involves a realistic ocean floor created relying on
Blender and Gazebo, where the terrain was designed to act
as irregular underwater rolling mountains, creating a complex
environment. Considering the strict requirements of pursuit
and evasion capabilities for both the UUV and target in UPEG,
it is necessary to ensure they can both obtain the expert policy
through RL training, respectively. Based on above analysis,
in the source scenario, we first separately train the UUV and
the spherical robot to approach their own corresponding target
points in the same environment via MAISAC. Furthermore,
we save the network models (.pth files) and then load them
for further RL training and policy improvement in the target
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Fig. 10. Average total reward curves of the spherical robot for different
scenarios changing from the source scenario (STT process 1) to the target
scenario (STT process 2), which utilizes MAISAC for policy improvement
via STT method, with ωmax ranging from 3.0rad/s to 4.0rad/s.

scenario. Besides, to showcase the training efficiency and
superior performance of the proposed MAISAC algorithm,
we conduct contrast experiments via MAISAC and the clas-
sical RL algorithm independent proximal policy optimization
(IPPO), respectively. The experiment results of the UUV and
spherical robot in two scenarios are shown in Fig. 6 and Fig.
7.

It is observed that after 100 episodes of training, the
reward curves have converged, indicating that the UUV and
spherical robot have obtained the expert policy through RL
training in the source scenario. Similar to the training in
the source scenario, the reward curves fluctuate initially, but
soon increase and eventually converge again in the target
scenario, which indicates their policies are considered to have
reached an expert level again. Moreover, upon comparing
the curves resulting from the employment of MAISAC and
IPPO algorithm, it is observed that MAISAC can achieve
convergence with greater rapidity compared to IPPO, and it
generally yields a more substantial reward. This underscores
MAISAC’s enhanced efficiency in data usage and its overall
superior performance over IPPO.

Besides, ablation experiments are conducted to investigate
the influence of maximum velocity vmax and angular velocity
ωmax on the performance of the UUV and spherical robot
relying on MAISAC for training, respectively. As illustrated
in Fig. 8 and Fig. 9, with the increase of vmax and ωmax,
the average total reward of the UUV and spherical robot in
two scenarios after 100 episodes’ training all reach the expert
level, and rise in general, which demonstrates the adaptability
over changing parameters.

Furthermore, we also investigate the impact of the entropy
regularization coefficient (∂) on the training process. Given
that ∂ plays a pivotal role in balancing the trade-off between
exploration and exploitation, selecting an appropriate value is
essential for policy improvement performance. Specifically, we
modify ∂ ranging from 0.1 to 0.4 and employ the MAISAC
algorithm across 100 training episodes in the source scenario.
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Fig. 11. Mean and variance of total reward curves of the UUV and spherical
robot with entropy regularization coefficient changing from 0.1 to 0.4, which
utilizes MAISAC for policy improvement training.
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Fig. 12. The trajectories of the UUV and spherical robot within a single
training episode in the source scenario.

Finally, the mean and variance of the total reward are obtained
respectively, as shown in Fig. 10, which clearly indicates that
as ∂ rises, there is a general reduction in the mean and a
corresponding increase in the variance. Consequently, an ∂
value of 0.1 is ultimately selected for the training process of
policy improvement to guarantee the efficiency of RL training.

Additionally, we demonstrate the training effect of both the
UUV and the spherical robot towards obtaining expert policies
across two scenarios, depicted via trajectory graphs. Selected
segments of a single episode’s trajectory for each scenario are
presented in Fig. 11 and Fig. 12, respectively. Observations
from these graphs indicate that both the UUV and the spherical
robot have effectively accomplished the objective of navigating
to the target points. Furthermore, the UUV exhibits a more
pronounced advantage in its superior maximum velocity, while
the spherical robot, with greater maximum angular speed,
shows enhanced maneuverability, granting it an edge in in-
tricate navigation and densely obstructed environments.

Finally, the expert policy of the UUV in the target scenario
is selected to generate an offline dataset for subsequent offline
RL training. To be specific, the offline dataset is then utilized
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Fig. 13. The trajectories of the UUV and spherical robot within a single
training episode in the target scenario.
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for training the DT models, which include three UUV models.
This training process correspondingly results in three loss
curves, as shown in Fig. 13. The initial loss values of 0.843,
0.822 and 0.812 are subsequently reduced to 0.0682, 0.0722
and 0.0745, respectively, indicating the successful completion
of the model training process.

In the subsequent stage of ETFDU, the trained spherical
robot acts as the target, whose task is to evade the pursuit
of UUVs, while the trained DT models are employed in each
UUV, whose task is to pursue the target in UPEG. The DT
models take initial returns-to-go and the initial state of each
UUV as input and accurately predict the next action, which en-
able the UUVs to track the target simultaneously and maneuver
across complex environment. To test final training effect of
ETFDU, we depict trajectories of the UUVs and target in
a single episode, as illustrated in Fig. 14. In addition, the
unsmoothed and smoothed relative distance curves between
each UUV and the target in the last 1400 steps of another
single episode are depicted in Fig. 15 and Fig. 16, respectively.

Observations from Fig. 14 reveal that UUVs successfully
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Fig. 15. The trajectories of three UUVs and the target within a single episode
in the target scenario.
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achieve joint pursuit of the target in the complex environment.
However, the agility of the spherical robot enables it to
navigate and change directions freely within complex and
confined terrains, thus allowing it to elude the UUVs’ pursuit
effectively. In certain instances, the relative distance between
some UUV and the spherical robot falls below the maximum
target distance li↔T

max (25m), and rarely below the minimum
safe distance, li↔j

min (15m). Moreover, analysis of Fig. 16 shows
that the relative distance between the UUVs and the target
gradually diminishes with each step, indicating the rounding
up of the target by UUVs. The above simulation outcomes not
only highlight the spherical robot’s flexibility in navigating
complex environment, but also underscore the effectiveness
and practicality of the ETFDU framework, as well as the
feasibility of proposed simulator HPTVSim.

VI. CONCLUSION

In this paper, a simulator named HPTVSim for UUVs
dedicated in the UPEG task was developed, with customizable
modules such as 3D simulation scenarios, dynamics models,
sensors, etc., while providing an RL environment to train UUV
intelligence to the UPEG task. We considered the UPEG as the
specific task for simulator verification, and proposed ETFDU
framework, which includes multi-agent DTDE technology,
STT method, and DT based offline RL technique to assist
UUV efficient training. Simulation experiments were con-
ducted to showcase the effectiveness and practicality of pro-
posed ETFDU and HPTVSim, which efficiently train UUVs
and target to complete the UPEG task. Future work will
focus on improving the suitability of HPTVSim and real-world
environment to address the sim2real challenge, and conduct
the experiments in real underwater scenario.

REFERENCES

[1] Z. Wang, Z. Zhang, J. Wang, C. Jiang, W. Wei, and Y. Ren, “AUV-
assisted node repair for IoUT relying on multi-agent reinforcement
learning,” IEEE Internet Things J., vol. 11, no. 3, pp. 4139-4151, Feb.
2024.

[2] Z. Zhang, J. Xu, G. Xie, J. Wang, Z. Han and Y. Ren, ”Environment-
and Energy-Aware AUV-Assisted Data Collection for the Internet of
Underwater Things,” IEEE Internet Things J., vol. 11, no. 15, pp. 26406-
26418, Aug. 2024.

[3] J. Xu, Z. Zhang, J. Wang, Z. Han and Y. Ren, ”Multi-AUV Pursuit-
Evasion Game in the Internet of Underwater Things: An Efficient
Training Framework via Offline Reinforcement Learning,” IEEE Internet
Things J., vol. 11, no. 19, pp. 31273-31286, Oct. 2024.

[4] C. Lin, G. Han, M. Guizani, Y. Bi, J. Du, and L. Shu, “An SDN
architecture for AUV-based underwater wireless networks to enable
cooperative underwater search,” IEEE Wirel. Commun., vol. 27, no. 3,
pp. 132-139, Jun. 2020.

[5] T. R. Player, A. Chakravarty, M. M. Zhang, B. Y. Raanan, B. Kieft,
Y. Zhang, and B. Hobson, “From concept to field tests: Accelerated
development of multi-AUV missions using a high-fidelity faster-than-
real-time simulator,” in Proc. IEEE Int. Conf. Robot. Autom., London,
UK, May-Jun. 2023, pp. 3102-3108.

[6] Y. Mo, S. Ma, H. Gong, Z. Chen, J. Zhang, and D. Tao, “Terra: A
smart and sensible digital twin framework for robust robot deployment
in challenging environments,” IEEE Internet Things J., vol. 8, no. 18,
pp. 14039-14050, Sep. 2021.

[7] X. Dai, C. Ke, Q. Quan, and K. Y. Cai, “RFlySim: Automatic test
platform for UAV autopilot systems with FPGA-based hardware-in-the-
loop simulations,” Aerosp. Sci. Technol., vol. 114, Jul. 2021, Art no.
106727.

[8] M. R. Kabir, B. B. Y. Ravi, and S. Ray, “A virtual prototyping platform
for exploration of vehicular electronics,” IEEE Internet Things J., vol.
10, no. 18, pp. 16144-16155, Sep. 2023.

[9] L. Hong, X. Wang, D. S. Zhang, M. Zhao, and H. Xu, “Vision-based
underwater inspection with portable autonomous underwater vehicle:
Development, control, and evaluation,” IEEE Trans. Intell. Veh., vol.
9, no. 1, pp. 2197-2209, Jan. 2024.
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