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Abstract—Considering the wide-area distribution and lim-
ited transmission power of sensing devices in the Internet of
Underwater Things (IoUT), employing autonomous underwater
vehicles (AUVs) to collect data is considered a promising solu-
tion. While most existing AUV-assisted data collection schemes
primarily focus on enhancing data collection throughput and
identifying the shortest path, they often overlook the influence
of the underwater environment on AUV and the timeliness of
data collection. In this article, we design a multi-AUV-assisted
data collection system, in which AUVs select their own target
devices to collect data according to the data upload urgencies
of IoUT devices. Considering the disturbance of turbulent ocean
environment and the limited energy of AUV, we propose an
environment- and energy-aware AUV-assisted data collection
scheme. This scheme aims to conduct path planning for multiple
AUVs based on perceived environmental information, including
turbulent fields and device statuses. The primary goals are to
maximize the sum data collection rate and total data throughput,
minimize AUV energy consumption, reduce the average data
overflow times. To solve this high-dimensional NP-hard problem,
we first model the problem as a Markov decision process, and
propose a multiagent independent soft actor–critic to solve it.
Extensive simulations validate the effectiveness and adaptability
of our approach.
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I. INTRODUCTION

ORIGINATING from the Internet of Things, the
Internet of Underwater Things (IoUT) is an intelligent

network connected by various types of underwater sens-
ing devices [1], [2]. IoUT uses these devices and related
technologies to perceive, interpret, and transmit data about
the underwater environment, facilitating activities, such as
underwater searching and resource exploration [3]. Unlike ter-
restrial wireless communication environments, the underwater
environment is complex and changeable, and the electromag-
netic signal is seriously attenuated in underwater, resulting
in the inapplicability of radio frequency communication tech-
nology to IoUT, and underwater acoustic communication
is widely used as a remedy [4]. However, IoUT networks
based on acoustic communication face the shortcomings of
low bandwidth and long delay, thus making them unsuitable
for long-distance transmission of large amounts of data.
Consequently, devising efficient and reliable data collection
schemes within IoUT networks remains a pivotal challenge for
ongoing research.

Traditional data collection methods typically utilize
multihop routing among IoUT devices, this process will
increase energy consumption and thereby shortens the opera-
tional lifespan of battery-powered devices without recharging
capabilities [3]. To address this challenge, hierarchical data
collection schemes are widely discussed [5], [6], [7]. Within
these schemes, devices are first organized into clusters with
designated cluster heads responsible for gathering data from
other devices in their respective clusters. These cluster heads
then uniformly transmit the collected data to the surface
base station. However, these cluster heads often succumb
prematurely due to the increased communication overhead,
which can lead to potential network failures. In contrast,
deploying autonomous underwater vehicles (AUVs) as mobile
platforms for collecting data through acoustic links has proven
to be a more cost-effective and efficient alternative [8].

The current AUV-assisted data collection schemes often rely
on predetermined trajectories, in which devices far from the
AUV’s trajectory need to forward data to the AUV through
other devices, which inevitably leads to redundant energy
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consumption [9]. Some studies have focused on optimizing
AUV trajectories to enhance their autonomy to actively collect
data from devices, rather than following a predetermined
path, Liu et al. [10] modeled the trajectory optimization
problem as a traveling salesman problem (TSP) to find the
shortest path. Duan et al. [8] optimized the AUV collection
trajectory by taking the value of information of the entire
IoUT network as an index. Huang et al. [11] proposed a two-
stage trajectory optimization mechanism and adopted greedy
algorithm to solve it. In general, the aforementioned efforts
focus on optimizing the AUV trajectory by minimizing sailing
distance, overlooking the effects of the turbulent environment
(TE), communication limitations, and device upload demands
on the trajectory.

The real-time statuses of IoUT devices vary based on
their geographical location and operational tasks, yet limited
research addresses this variability. Specifically, devices with a
larger backlog of stored data and a higher environmental data
generation rate need to be preferentially collected by AUV,
because once the data is not collected in time, it will lead
to data overflow and the old data will be overwritten by the
new data [12]. In this case, the single AUV cannot meet the
dynamic upload requirements of IoUT devices in time, and
so it is necessary to study the scheduling scheme of multi-
AUV data collection to work cooperatively [13]. Furthermore,
the current multi-AUV scheduling schemes are often designed
for a specific task, and the optimization methods used rely on
a large amount of prior data and lack adaptability, which is
not suitable for solving the multiobjective optimization data
collection problem in complex underwater environments.

Based on the above challenges and analysis, we design a
multi-AUV assisted data collection system and optimize the
AUV trajectory under environmental and communication con-
straints to tradeoff among the AUV energy consumption, the
timeliness of data collection, and efficiency of data collection.
Our main contributions can be summarized as follows.

1) To the best of our knowledge, this is the first multi-AUV
data collection work that takes into account the effects of
underwater TEs and the dynamic upload requirements of
IoUT devices. Through environment- and energy-aware
trajectory optimization, we achieve tradeoffs between
multiple optimization objectives, such as AUV energy
consumption, data collection timeliness, and total data
collection rate.

2) Since the constrained multiobjective optimization
problem formulated is high-dimensional NP-hard, it is
difficult to deal with. Therefore, we model it as a
Markov decision process (MDP) and design rewards and
penalties for corresponding objectives and constraints,
and propose a multiagent independent soft actor–critic
(MAISAC) based on decentralized training and decen-
tralized execution (DTDE) to solve it, so as to adapt to
the multi-AUV dynamic environment.

3) Numerous simulation results indicate that our approach
can optimize the trajectories of AUVs based on envi-
ronmental perception, thereby enhancing data collection
efficiency. Confronted with varying environments, com-
munication ranges, and numbers of AUVs, among other

escalating dimensions, our approach demonstrates feasi-
bility and scalability.

The remainder of this article is organized as follows.
Section II reviews relevant cutting-edge work. In Section III,
the system model is introduced in detail. In Section IV, the
constrained optimization problem is formulated and modeled
as MDP, which is solved by MAISAC. In Section V, the
performance of our scheme is analyzed from multiple dimen-
sions, and finally the conclusion is drawn in Section VI.

II. RELATED WORKS

Early data collection schemes primarily concentrate on col-
laborative transmission among IoUT devices, Zhang et al. [14]
proposed a hybrid protocol of selective relay cooperation
and dynamic network coding cooperation to improve the
data collection efficiency through cooperation between IoUT
devices. Han et al. [15] classified IoUT devices into different
virtual data sets and utilized hierarchical strategies of dynamic
layer and static layer to optimize data transmission. The data
collection work relying on IoUT device cooperation can be
summarized as optimizing data fusion between devices [16],
proposing hierarchical collection architecture [15], and design-
ing efficient routing strategies [17]. However, due to the
inability to extend the device battery life, schemes relying on
data fusion and multihop transmission between devices impose
an excessive burden, significantly shortening the device’s
operational lifespan. Due to the flexible and autonomous
characteristics of AUVs, Yoon et al. [9] innovatively utilized
AUVs as mobile relay nodes for the first time to collect data
in multihop IoUT. Hao et al. designed the trajectory of the
AUV by predicting the location of the routing void to collect
data of nearby IoUT devices. However, the devices far away
from the AUV need to pay extra energy to forward data to the
AUV [18]. The aforementioned schemes overlook the impact
of AUV trajectory optimization on the performance of the data
collection system and the efficiency of the collection scheme.

Data collection schemes that consider trajectory
optimization primarily focus on the operational cost of AUVs,
taking into account factors, such as sailing distance and
energy consumption, during the mission process [19], [20].
Specifically, considering the communication constraints
between the AUV and devices, Zhuo et al. [19] converted the
path planning problem to the TSP to minimize the AUV’s
travel time. Similarly, Faigl and Hollinger [20] converted
multi AUV data collection into TSP and found the shortest
path based on self-organizing mapping, which has certain
adapt ability. However, these trajectory optimization studies
are conducted in ideal environments, neglecting the impact
of the complex underwater environment on AUV trajectory.
Mahmoudzadeh et al. [21] analyzed the characteristics of
ocean turbulence and revealed that these factors would not
only interfere with the velocity and direction of AUV, but
also affect the energy consumption of AUV. To address the
trajectory optimization challenges in both static and dynamic
TEs, existing studies have explored a variety of algorithms,
including differential evolution, group optimization, and task
planning algorithms, and these investigations offer valuable

Authorized licensed use limited to: Tsinghua University. Downloaded on September 27,2024 at 09:07:20 UTC from IEEE Xplore.  Restrictions apply. 



26408 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

insights [22], [23]. Although the above work discussed the
trajectory optimization problem in TE, they did not consider
the requirements of mission-critical IoUT for timeliness
and quality of data collection [24]. Liu et al. [10] jointly
optimized the timeliness and energy efficiency of data
collection, and introduced value of information to optimize
the trajectory to ensure the timeliness of delay sensitive data.
Fang et al. [25] comprehensively considered AUV’s trajectory
optimization, energy consumption, and resource allocation,
and introduced the age of data to ensure the freshness of
data. It is neglected that the IoUT devices are different due to
differences in distribution, assigned tasks, and settings, which
requires the AUVs to preferentially access certain devices.
Yu et al. [26] discussed the data upload priority of devices
when studying unmanned aerial vehicle (UAV) assisted
Internet of Things data collection, and adopted reinforcement
learning to optimize the trajectory of the UAV, thus achieving
a tradeoff between the timeliness and the throughput of data
collection. Due to the effective learning and optimization of
decision-making processes in complex environments offered
by reinforcement learning, underwater data collection based
on reinforcement learning has emerged as a promising
approach. Wang et al. [27] proposed a collaborative data
collection method for multiple AUVs based on local-global
deep Q-learning and data value, which categorizes data
into urgent and nonurgent types, achieving hybrid data
collection to meet the temporal requirements of different data
types. Zhao et al. [17] designed a multilevel energy-efficient
routing strategy based on reinforcement learning to fulfill
the multiple transmission delay demands of various marine
applications in multimodal IoUT, enhancing the reliability and
network efficiency of data collection. Jiang et al. [28] utilized
a multiagent proximal policy optimization reinforcement
learning algorithm to guide efficient and energy-saving data
collection for AUV swarms in unknown environments based
on an uncertainty map of objectives and a digital pheromone
mechanism.

Based on the above analysis, there is no AUV-assisted
IoUT data collection scheme that comprehensively considers
environmental disturbance, energy efficiency and device char-
acteristics. In addition, when the task complexity increases,
the use of multiple AUVs for collaborative data collection
also needs to be studied. Furthermore, traditional methods
are not suitable for solving this high-dimensional NP-hard
optimization problem. Therefore, based on the proposed
MAISAC, this article designs an environment- and energy-
aware multi-AUV efficient data collection scheme to fill this
gap, which is of great significance to support complex IoUT
applications.

III. SYSTEM MODEL

A. Multi-AUV Assisted Data Collection System

We consider a multi-AUV assisted data collection system,
as shown in Fig. 1, where multiple AUVs navigate in a
turbulent ocean environment and determine which target
devices they need to visit for data collection based on the
status information of IoUT devices broadcast by the sur-
face station. Assume that there are K AUVs and M IoUT

Fig. 1. Illustration of multi-AUV assisted data collection system.

devices. K AUVs can be denoted as the set AUVs =
{AUV1, AUV2, . . . , AUVK}, M IoUT devices can be denoted
as the set D = {D1, D2, . . . , DM}. For brevity, let K =
{1, 2, . . . K} represent the subscript of AUVs, and M =
{1, 2, . . . , M} represent the subscript of the devices. The 3-D
coordinates of the IoUT device i and AUV k are denoted
as Pi = (xi, yi, d) and Pk(t) = (xk(t), yk(t), z), where 0 ≤
t ≤ T , T is the given task time. Assume that the state of
IoUT device i can be represented by the twin tuple Wi(t) �
{Qi(t), λi(t)}, where Qi(t) represents the stored data (in bit)
of IoUT device i at time t, and λi(t) represents the data
generation rate (in bit/s) of IoUT device i at time t. It is
worth noting that the TE will have an impact on the motion
and energy consumption of AUV. Each AUV is equipped
with a horizontal acoustic Doppler current profiler (HADCP)
for measuring ocean current velocity, which the manufacturer
claims is accurate to 1%±5 mm/s and can be used to measure
currents on a horizontal line hundreds of meters ahead [12].
With HADCP, the AUV can sense information about the
surrounding turbulent field and reduce energy consumption
through trajectory optimization.

B. Target Device Selection Model

Before scheduling AUVs to access IoUT devices, it is
necessary to determine the target device for each AUV to
access based on the data upload urgency of the devices. The
current stored data Qi(t) of device i at time t depends on the
status of the previous moment and the data generation rate.
The update equation of Qi(t) is [12]

Qi(t +�t) = Qi(t)+ λi(t) ·�t (1)

where �t is the update interval, Qi(t) ∈ [0, Qmax], Qmax is the
maximum amount of data that can be stored by the device,
which is constrained by hardware limitations. And λi(t) is the
data generation rate of device i, which follows the Poisson
distribution, and we assume that the parameters of the Poisson
distribution of each device are different [26]. As the data
backlog and data generation rate of devices are different, their
data upload urgency is also different. The upload urgency qi(t)
of device i can be defined as

qi(t) = λi(t) · Qi(t)

Qmax
. (2)
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As can be seen from (2), the upload urgency of device i
not only depends on the current state reflected by the ratio of
stored data to storage capacity Qi(t)/Qmax, but also includes
the prediction of future state reflected by the data generation
rate λi(t). Considering the actual situation, the priority of AUV
k to access device i depends not only on the upload urgency
of device i but also on its relative distance from AUV k.
Therefore, we define qi

k(t) to represent the priority of AUV k
to access device i, which is

qi
k(t) = λi(t) · Qi(t)

Qmax
− adk,i (3)

where di,k is the distance between AUV k and device i, and a
is the distance penalty factor. However, the determination of
the a value needs to be cautious, as a too large a may prevent
the AUV from accessing devices that are located far away but
have high-upload urgency. AUV k can calculate the willingness
to access a particular device based on (3) and select the device
with the highest access priority as the target device.

C. Underwater Acoustic Communication Channel Analysis

The AUV collects data from the target device by establish-
ing the underwater acoustic communication channel, so we
analyze the underwater acoustic communication channel. In a
shallow water acoustic propagation environment, the path loss
A(dk,i, f ) of an acoustic signal with frequency f between AUV
k and device i is

A
(
dk,i, f

) = dς
k,ia(f )dk,i (4)

where ς is the spread factor and a(f ) is the absorption
coefficient in dB per km, as calculated using the Thorp
formula [29]

10 log(a(f )) = 0.11
f 2

1+ f 2
+ 44

f 2

4100+ f 2

+ 2.75× 10−4f 2 + 0.003. (5)

According to [30], underwater environmental noise N(f ) is
composed of turbulence, ship, wind and thermal noises [11],
denoted as Nt(f ), Ns(f ), Nw(f ) and Nth(f ), respectively, and
therefore we have

N(f ) = Nt(f )+ Ns(f )+ Nw(f )+ Nth(f ). (6)

The noise components in (6) can be, respectively, described
as [31]
⎧
⎪⎪⎨

⎪⎪⎩

10 log Nt(f ) = 17− 30 log f
10 log Ns(f ) = 30+ 20s+ log

(
f 26/(f + 0.03)60

)

10 log Nw(f ) = 50+ 7.5ϑ1/2 + 20 log
(
f /(f + 0.4)2

)

10 log Nth(f ) = −15+ 20 log f

(7)

where s is the shipping activity factor, and ϑ is wind speed,
s ∈ [0, 1]. Thus, the signal-to-noise ratio (SNR) γ (dk,i, f ) of
the channel between device i and AUV k can be given by

γ
(
dk,i, f

) = 1

A
(
dk,i, f

) · N(f )
(8)

where γ (dk,i, f ) is related to distance dk,i and frequency
f , which makes it difficult for channel capacity analy-
sis. To simplify, we assume that there is an optimal

frequency fo(dk,i) for the given communication distance
dk,i, and the SNR at this frequency is γo(dk,i). We
define a 3-dB frequency range [fL(dk,i), fU(dk,i)], satisfying
γ (dk,i, fL(dk,i)) = γ (dk,i, fU(dk,i)) = γo(dk,i) − 3 dB [29].
Assuming that the device and AUV transmits data using a
narrow-band signal with a center frequency fc and bandwidth
w falling within the 3 dB frequency range, SNR γ (dk,i, f ) of
the true channel can be replaced by the following switching
function:

γ̃
(
dk,i

) =
{

min
{
γ
(
dk,i, fc − w

2

)
, γ
(
dk,i, fc + w

2

)}
, f ∈ w,

0, otherwise.
(9)

Assuming that the channel is an additive white Gaussian
noise channel, the channel capacity R(dk,i) is

R
(
dk,i
) = w log2

(

1+ PSLγ̃
(
dk,i
)

w

)

(10)

where PSL( dB re μPa) is the source level. To convert
electrical power PT in watts to acoustic power PSL, we have
the following empirical relationship:

IT = ηPT

2πH
, (11)

PSL = 10 log
IT

1μPa
(12)

where η represents the overall efficiency of the electronic
circuitry, which includes the power amplifier and transducer,
and H is the water depth. Moreover, IT denotes the intensity
at a reference distance of 1 m, with the chosen value of 1 μPa
equivalent to be 0.67× 10−22 W/cm2.

D. Trajectory Model

Assuming that the set of sk hovering points of AUV k in the
whole process is Sk, we set Pk[ξ ] ∀ξ ∈ Sk = {1, 2, . . . , sk} as
the trajectory of AUV k. Then, we define dk[ξ ] as the distance
between the two hovering points, which can be calculated as

dk[ξ ] = ‖Pk[ξ + 1]− Pk[ξ ]‖2∀k ∈ K∀ξ ∈ Sk. (13)

Let hk,i[ξ ] = 1 indicate that AUV k can access device i to
collect data at the ξ th hovering point, otherwise hk,i[ξ ] = 0.
The trajectory design strategy of AUVs can be expressed as
H = {hk,i[ξ ], k ∈ K, i ∈ M, ξ ∈ Sk}. In order to ensure that
each AUV serves only one device at a time, as well as that a
device is only served by one AUV. We have

K∑

k=1

hk,i[ξ ] = 1∀k ∈ K∀i ∈ M (14)

and
M∑

i=1

hk,i[ξ ] = 1 ∀k ∈ K ∀i ∈ M. (15)

The time required for AUV k to collect data from device i at
the ξ th hovering point can be denoted as

ck,i[ξ ] = Qi
(
tξ
)

R
(
dk,i[ξ ]

) (16)
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where dk,i[ξ ] is the distance between AUV k and device i at
the ξ th hovering point, and tξ represents the time to reach the
ξ th hovering point.

E. Motion Model

We assume that AUV k is moving in a 2-D plane with a
fixed depth, and its state changes discretely with time, the
three-degree-of-freedom motion model is derived without loss
of generality. The state of AUV k at time stamp t is Sk(t) =
{xk(t), yk(t), vk,x(t), vk,y(t), ak(t), θk(t), ωk(t)}, the elements in
the set represent current position, velocity, acceleration, yaw
angle, and angular velocity. Since the time stamp is small, the
motion within the time stamp can be regarded as uniformly
accelerated motion, and the position update equation is

xk(t + 1) = xk(t)+
(
vk,x(t)+ vk,x(t + 1)

)
�t/2 (17a)

yk(t + 1) = yk(t)+
(
vk,y(t)+ vk,y(t + 1)

)
�t/2. (17b)

Similarly, the velocity update equation is

vk,x(t + 1) = vk,x(t)+ ak(t) cos(θk(t + 1))�t (18a)

vk,y(t + 1) = vk,y(t)+ ak(t) sin(θk(t + 1))�t. (18b)

Moreover, the angle update equation is

θk(t + 1) = θk(t)+ ωk(t)�t. (19)

Considering that the angle range is [−π, π ], (19) is modified
as

θk(t + 1) =
⎧
⎨

⎩

θk(t + 1)− 2π, θk(t + 1) > π

θk(t + 1)+ 2π, θk(t + 1) < −π

θk(t + 1), θk(t + 1) ∈ [−π, π ].
(20)

AUVs are assumed to have the same equipment limitations
from the perspectives of steering and acceleration rate, i.e.,

‖ωk(t)‖ ≤ ζω ∀t ∀k ∈ K (21)

‖ak(t)‖ ≤ ζa ∀t ∀k ∈ K (22)

where ζω > 0 and ζa > 0 are steering range limit constant
and acceleration limit constant, respectively.

F. Turbulent Ocean Environment Modeling

AUV navigation in the marine environment will be affected
by ocean current, wave, wind and other factors, among which
the latter two factors can be ignored below 2-m water level,
and the AUV movement is mainly affected by ocean current.
Due to the Earth’s rotation effect, the strength of ocean
currents on the horizontal plane is much greater than that on
the vertical plane. Considering that this study is conducted
on the horizontal plane, the speed of ocean currents on the
vertical plane can be ignored [32]. Ocean current models
can be characterized by multiple turbulent regions. Which is
modeled by 2-D Navier–Stokes equations [33]

∂�

∂t
+ (vc∇)� = υ�� (23)

where vc = (Vx, Vy) is the velocity of the turbulent field,
� and υ are the vorticity of current and the viscosity
of the fluid, and ∇ and � are the gradient operators and

Laplacian operators, respectively. To simplify the Navier–
Stokes equation, the numerical equation of the ocean current
model is represented by the superposition of several viscous
vortex functions, which is described as follows [32]:

Vx(P(t)) = −� · y− y0

2π‖P(t)− P0‖22
·
(

1− e
−‖P(t)−P0‖22

δ2

)

(24)

Vy(P(t)) = −� · x− x0

2π‖P(t)− P0‖22
·
(

1− e
−‖P(t)−P0‖22

δ2

)

(25)

and

�(P(t)) = �

πδ2
· e−
‖P(t)−P0‖22

δ2 (26)

where P(t) and P0 are the current position of AUV and the
coordinate vector of Lamb vortex center, δ is the radius of
vortex, and � is the intensity of vortex [34]. Then the velocity
of AUV k under ocean current interference is

vk(Pk(t)) = vk − vc(Pk(t)) (27)

where vc(Pk(t)) is the water flow velocity at position Pk(t)
and vk(Pk(t)) is the relative velocity at position Pk(t).
According to the classical computational fluid dynamics
(CFDs) method [35], the drag force of AUV k hovering and
sailing can be expressed as [12]

Fh
k =

1

2
ρl‖vc(Pk(t))‖22CaCd (28)

and

Fm
k =

1

2
ρl‖vk(Pk(t))‖22CaCd (29)

respectively, where ρl is the density of seawater. Ca and Cd are
the drag coefficient and the front area of AUV, respectively.

G. Energy Consumption Model

The energy consumption of AUV comes from the hovering
energy consumption during data collection and the motion
energy consumption between two hovering points. According
to (28), the power consumption of AUV k at the ξ th hovering
point is [29]

Ph
k[ξ ] = 1

ζ
Fh

k [ξ ]‖vc(Pk[ξ ])‖22 (30)

where ζ is the electrical conversion efficiency. Since the speed
of water flow at each point in the subtrajectory (between
two hovering points) is different, this poses a challenge to
the analysis of motion energy consumption. To solve this
challenge, we calculate the average of the relative velocities at
the starting point, end point and midpoint of the subtrajectory
to approximate the average relative velocity during the sub-
trajectory, taking the process of AUV k moving from the ξ th
hovering point to the ξ + 1th hovering point as an example,
and the average relative velocity is expressed as [29]

ṽk(Pk[ξ ]) = 1

3
(vk(Pk[ξ ])+ vk(Pk[ξm])+ vk(Pk[ξ + 1] )) (31)

where ξm is the midpoint between the ξ th hovering point and
the ξ+1th hovering point. According to (29), the resistance of
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AUV k in the motion of the ξ th subtrajectory can be expressed
as

Fm
k =

1

2
ρl‖ṽk(Pk[ξ ])‖22CaCd (32)

Therefore, the power consumption required by AUV k in the
ξ th subtrajectory motion can be given by

Pm
k [ξ ] = 1

ζ
Fm

k [ξ ]‖ṽk(Pk[ξ ])‖22. (33)

As a result, the total energy consumption of AUV k is

Ek =
M∑

i=1

sk∑

ξ=1

hk,i[ξ ]Ph
k[ξ ]ck,i[ξ ]+

sk∑

ξ=1

Pm
k [ξ ]tmk [ξ ] (34)

where tmk [ξ ] is the time required to navigate from the ξ th
hovering point to the ξ + 1th hovering point.

IV. PROBLEM FORMULATION AND ALGORITHM DESIGN

We formulate the problem and discussed optimization
objectives and constraints in this section. Then, the data
collection task is modeled as MDP, and the corresponding
reward function is designed. Finally, the MAISAC algorithm is
proposed for AUV path planning to jointly optimize multiple
objectives.

A. Problem Formulation

The optimization objectives we consider include maxi-
mizing the total data throughput and sum data collection
rate, minimizing AUV energy consumption, and ensuring the
timeliness of data collection. Timeliness of data collection is
achieved by considering the upload urgencies of IoUT devices,
while the other objectives can be examined using the profit of
the multi-AUV data collection system, where profit is defined
as revenue minus cost. The total data throughput, meaning
the total amount of data collected in the task, is considered
a revenue, reflecting the data collection capability of multiple
AUVs. The sum data collection rate is also considered a
revenue, as it reflects the state of communication links,
affecting data collection efficiency. The cost of the system
mainly comes from AUV operational energy consumption. The
total data Q̂k collected by AUV k can be expressed as

Q̂k =
M∑

i=1

sk∑

ξ=1

hk,i[ξ ]Qi
(
tξ
)
. (35)

In the data collection task, the sum of the data collection rate
of AUV k at each hover point is

R̂k =
M∑

i=1

sk∑

ξ=1

hk,i[ξ ]R
(
dk,i[ξ ]

)
. (36)

As a result, the profit of the system can be obtained

Pr =
K∑

k=1

(
μQ̂k + χ R̂k − ςEk

)
(37)

where μ ∈ (0, 1), χ ∈ (0, 1), and ς ∈ (0, 1) are the
contribution or loss weight factors of the corresponding item

to profit, respectively, which can be dynamically adjusted
according to demand.

To maximize the profit defined by (37), it is necessary to
optimize the trajectory strategy H. The optimization problem
can be defined as

max
H

Pr =
K∑

k=1

(
μQ̂k + χ R̂k − ςEk

)
(38a)

s.t. hk,i[ξ ] = 1, if dk,i[ξ ] ≤ Rr ∀k ∈ K ∀i ∈ M (38b)
K∑

k=1

hk,i[ξ ] = 1 ∀k ∈ K ∀i ∈ M (38c)

M∑

i=1

hk,i[ξ ] = 1 ∀k ∈ K ∀i ∈ M (38d)

‖ωk(t)‖ ≤ ζω, ‖ak(t)‖ ≤ ζa ∀t ∀k ∈ K (38e)

where the optimization objective (38a) is to maximize
the total profit of the multi-AUV data collection system.
Constraint (38b) indicates that the AUV can collect data
only when the distance between the device and the hovering
point is within the communication range Rr of the AUV.
Constraint (38c) indicates that a device can only communicate
with one AUV. Constraint (38d) indicates that an AUV can
access only one device simultaneously. Constraint (38e) limits
the angular velocity and acceleration of the AUV according to
the actual situation.

B. Markov Decision Process Modeling

Since the optimization objective (38a) is NP-hard and it is
difficult to find the optimal solution under multiple constraints.
To solve it, we first need to convert the optimization objec-
tive (38a) into an MDP and then adopt reinforcement learning
method to solve it. MDP can be defined by a quintuple [28]

� = {S, A, P, R, μ} (39)

where S, A, and R represent state space, action space, and
reward function; P is state transition probability distribution;
and μ is discount factor. We pay special attention to S, A and
R of AUV k when designing the algorithm.

1) State Space: In the data collection task, the observation
space of AUV k at time t is sk(t) ∈ S, defined as

sk(t) =
{

Pi, Wi(t), Pk(t), qi
k(t), vc(Pk(t)), dk,j(t)

Nk(t), Nl(t), i ∈ M, j ∈ K, j �= k
}

(40)

where Pi is the location of device i, Wi(t) � {Qi(t), λi(t)}
describes the state of device i at time t, Pk(t) is the location
of AUV k at time t, qi

k(t) is the priority of AUV k to access
device i, vc(Pk(t)) is the turbulent velocity of AUV k at the
location of time t, dk,j(t) is the relative distance between AUV
k and AUV j, Nk(t) is the cumulative number of out-of-bounds
of AUV k. Nl(t) is the number of devices with data overflow.

2) Action Space: In the process of data collection, the AUV
k makes action ak(t) ∈ A at time t by observing state sk(t),
which is

ak(t) = {ik(t), ak(t), ωk(t)} (41)

Authorized licensed use limited to: Tsinghua University. Downloaded on September 27,2024 at 09:07:20 UTC from IEEE Xplore.  Restrictions apply. 



26412 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

where ik(t) indicates that AUV k selects the device ik as target
device at time t according to the calculation of the access
priority of all devices.

3) Reward Function: In reinforcement learning, agents rely
on rewards to evaluate learning strategies. To solve (38a),
we need to design corresponding reward functions to guide
AUVs to make reasonable decisions to optimize trajectories
in complex environments and improve the efficiency of data
collection. The reward rk(t) ∈ R received by the AUV k at
time t consists of the following parts:

r(1)
k (t) =

{
R
(
dk,ik(t)

)
, if dk,ik(t) ≤ Rr

0, otherwise
(42)

r(2)
k (t) =

{
− 1

2ζ
ρlCaCd

(‖vc(Pk(t))‖22
)2

, if AUV is hovering

− 1
2ζ

ρlCaCd
(‖vk(Pk(t))‖22

)2
, if AUV is moving

(43)

r(3)
k (t) =

M∑

i=1

st∑

ξ=1

hkii[ξ ]Qi
(
tξ
)

(44)

r(4)
k (t) =

K∑

j=1,j �=k

(
dk,j(t)− dsafe

)
(45)

r(5)
k (t) = −dk,ik(t)− Nk(t)− Nl(t) (46)

where r(1)
k (t) is a reward item used to encourage AUV k to

establish high-quality communication links. When the distance
dk,ik(t) between AUV k and target device ik is less than Rr,
AUV k will get a reward, which is the data collection rate
between AUV k and target device ik, and its magnitude is
related to dk,ik(t). r(2)

k (t) is to punish the excessive energy
consumption of AUV k in the hovering and moving stages,
and the power consumption of AUV k at time t is related
to the velocity of AUV k and the turbulent velocity of the
location. r(3)

k (t) represents the total amount of data collected
by AUV k during the task period, which is regarded as a
reward to encourage AUV k to collect more data. To prevent
collisions between AUVs, we use r(4)

k (t) to punish AUVs when
the distance between AUV k and AUV j is less than the safe
distance dsafe. r(5)

k (t) is the system auxiliary reward, the greater
the penalty is when AUV k is farther away from the target
device ik, the more times AUV k crosses the boundary, the
more the penalty is, and the more the number of devices that
fail to be visited by AUV k in time and cause data loss, the
more the penalty is. Therefore, the total reward available for
AUV k at time t can be weighted by

rk(t) =
5∑

l=1

ω(l)r(l)
k (t) (47)

where ω(l) is the weight coefficient of each reward, which can
be adjusted according to the application needs.

C. Multiagent Independent Soft Actor–Critic

Traditional reinforcement learning methods cannot adapt to
the multi-AUV dynamic data collection environment consid-
ered in this article. Considering that soft actor–critic (SAC)
can naturally balance exploration and utilization compared

with other popular reinforcement learning methods, such as
proximal policy optimization and deep Q-network, it can
realize efficient learning in a wide range of tasks [36]. So
we extend the SAC algorithm to MAISAC using DTDE to
train the AUVs in parallel and independently, enabling them to
perform their own tasks in the unknown dynamic environment.
In MAISAC, AUV k has two action value functions Q1

k and Q2
k ,

and a policy function πθk . To tackle the challenge of Q value
overestimation, we employ a pair of critic networks denoted as
��

k and ��
k , along with their corresponding target networks

�̃1
k and �̃2

k . Opting for the network exhibiting a lower Q value
serves to alleviate the overestimation issue. Consequently, the
loss functions of Q1

k and Q2
k are

LQ1
k

(
��

k

) = E(
sk
t ,a

k
t ,r

k
t ,s

k
t+1

)
∼Dk

[
1

2
Q��

k

(
sk

t , ak
t

)

−
(

rk
t + γ V�̃1

k

(
sk

t+1

))]2

(48)

LQ2
k

(
��

k

) = E(
sk
t ,a

k
t ,r

k
t ,s

k
t+1

)
∼Dk

[
1

2
Q��

k

(
sk

t , ak
t

)

−
(

rk
t + γ V�̃2

k

(
sk

t+1

))]2

(49)

where Dk denotes the replay buffer, whereas V�̃1
k
(·) and V�̃2

k
(·)

are the state value functions parameterized by �̃1
k and �̃2

k ,
respectively. To prevent AUV k from becoming trapped in
local optimal policy, we introduce entropy regularization and
represent V�̃1

k
(sk

t+1) and V�̃2
k
(sk

t+1) as follows:

V
�̃1

k

(
sk
t+1

)
= min

j=1,2
Q

�̃
j
k

(
sk
t+1, ak

t+1

)
− ∂k log

(
πθk

(
ak

t+1 | sk
t+1

))
,

(50)

V
�̃2

k

(
sk
t+1

)
= min

j=1,2
Q

�̃
j
k

(
sk
t+1, ak

t+1

)
− ∂k log

(
πθk

(
ak

t+1 | sk
t+1

))

(51)

where ∂k is the regularization coefficient, determining the
weight placed on entropy in the policy. Subsequently, the loss
function for the policy can be derived from the simplified KL
divergence

Lπθk
(θk) = Esk

t∼Dk,ak
t∼πθk

[
∂k log

(
πθk

(
ak

t | sk
t

))

− min
j=1,2

Q
�

j
k

(
sk

t , ak
t

)]
. (52)

To address the issue of nondifferentiability when sampling
actions from Gaussian distribution N the reparameteriza-
tion trick is introduced, allowing the policy function to be
expressed as ak

t = fθk(φt; sk
t ), where φt represents a noise

random variable. By considering two action value functions
simultaneously, the policy’s loss function is

Lπθk
(θk) = Esk

t∼Dk,φt∼N
[
∂k log

(
πθk

(
fθk

(
φt; sk

t

)
| sk

t

))

− min
j=1,2

Q
�

j
k

(
sk

t , fθk

(
φt; sk

t

))]
. (53)
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Algorithm 1 MAISAC Algorithm
1: Initialize the training environment, including the replay

buffer Dk, network parameters, and entropy regularization
��

k , ��
k , �̃1

k , �̃2
k , θk, ∂k of AUV k.

2: for each episode i do
3: Reset the training environment and total reward.
4: for each time step t do
5: Sample an action for AUV k according to the

policy:
6: ak

t ∼ πθk

(
ak

t | sk
t

)
;

7: Collect the next state from environment:
8: sk

t+1 ∼ P(sk
t+1 | sk

t , ak
t

)
;

9: Calculate reward rk
t by (42) ∼ (47);

10: Store sampling tuple
(
sk

t , ak
t , rk

t , sk
t+1

)
into Dk.

11: Extract N batches tuple of data from Dk.
12: �

j
k ← �

j
k − λ

�
j
k
∇

�
j
k

J
�

j
k

(
�

j
k

)
, j = �,�.

13: θk ← θk − λθk∇θk Jθk(θk).
14: ∂k ← ∂k − λ∂k∇∂k J∂k(∂k).
15: �̃

j
k ← κ�

j
k + (�− κ)�̃

j
k , j = �,�.

16: end for
17: end for

To automatically adjust the entropy regularization term,
the goal of reinforcement learning can be reformulated as a
constrained optimization problem

max
πθk

Eπθk

[
∑

t

rk
t

]

s.t. Esk
t∼Dk,ak

t∼πθk

[
− log

(
πθk

(
ak

t | sk
t

))]
≥ H0. (54)

More intuitively, the objective is to maximize the expected
total reward while ensuring that the entropy mean exceeds H0.
By simplifying (54), we can derive the loss function for

L(∂k) = Esk
t∼Dk,ak

t∼πθk

[
−∂k log

(
πθk

(
ak

t | sk
t

))
− ∂kH0

]
. (55)

Equation (55) implies that if the policy entropy is below the
desired value H0, the training target L(∂k) will raise the value
of ∂k. Consequently, it will amplify the significance of the
corresponding term in the policy entropy during the process of
minimizing the loss function Lπθk

(θk). Conversely, if the policy
entropy exceeds H0, L(∂k) will lower ∂k, thereby directing the
policy training toward prioritizing value improvement.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we first introduce the setting of the sim-
ulation experiment in detail, including the environment and
algorithm parameters. Second, we conduct a large number of
experimental results to demonstrate the process of multi-AUV
data collection tasks and verify the feasibility of proposed
MAISAC algorithm. Finally, we compare the MAISAC with
the baseline algorithm in different task environments, and
investigate the effect of learning rate on the performance of
our algorithm, which proves the superiority of MAISAC.

A. Experiment Settings

1) Environment Parameters: The size of the experiment
site is L× L, the initial L = 120 m, and the depth is −50 m.

TABLE I
SIMULATION ENVIRONMENT PARAMETERS

The experimental environment is divided into turbulence-free
environment (TFE) and TE. When the TE is considered, there
are several vortex distributions, whose centers are distributed at
(30 m, 23 m), (63 m, 45 m) and (75 m, 77 m), with an intensity
� of 8 and a radius δ of 48 m. Initially, 45 IoUT devices
are randomly distributed in the environment, and their λi(t)
are randomly selected from the set {3, 5, 8, 12}. In the initial
case, there are two AUVs at a certain height to collect data
of devices with 6 m as the communication radius. In addition,
motion parameters, system communication parameters, etc.,
are detailed in Table I.

2) Algorithm Parameters: In the training stage, the total
duration of each epoch is T = 1000 s, the step �T = 1 s,
the network learning rate λ is set to 3×10−4, and the discount
factor γ is assigned to 0.99. To facilitate network updates, the
soft update coefficient τ is set to 0.01, and the initial value of
the entropy α is 0.2. In addition, the initial value of penalty
alpha is 0.03, which affects the strategy of AUV in selecting
target device, which will be discussed in detail later, and other
algorithm parameters are summarized in Table I.

B. Simulation Results and Analysis

Based on the DTDE framework, multiple AUVs are trained
with MAISAC algorithm to optimize their respective policies.
At the beginning of each epoch, the position of AUVs and
the status of devices will be reset. Each AUV selects the
target device according to (3). Then, the AUV navigates to
the target device for data collection. Once the data of the
device is collected, the AUV will reselect the target device and
repeat the above process until the task is completed. In order
to study the influence of environment on simulation results
and to demonstrate the adaptability of our proposed algorithm,
experiments are conducted, respectively, in TFE and TE, where
the AUV communication range Rr is gradually expanded from
4 to 8 m. The experimental results are shown in Figs. 2 and 3.
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Fig. 2. Training process of the multi-AUV data collection in the TFE via MAISAC: (a) accumulated reward curves; (b) sum data collection rate; and
(c) average energy cost curves.
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Fig. 3. Training process of the multi-AUV data collection in the TE via MAISAC: (a) accumulated reward curves; (b) sum data collection rate; and (c) average
energy cost curves.

Upon the cumulative reward curves in Figs. 2(a) and 3(a),
the policies of AUVs are not perfect in the initial training
stage, resulting in a large number of trials and errors. Through
extensive interaction with the environment, the reward curves
gradually converge, indicating that the data collection poli-
cies of AUVs eventually converge to the level of experts.
Considering the environmental impact, the cumulative reward
and sum data rate in the turbulent ocean environment are
generally lower than that in the TFE, and the fluctuation is
more obvious. It is worth noting that our proposed algorithm
successfully achieves the tradeoff of multiple optimization
objectives. To illustrate this, taking the case of Rr = 6 m
in Fig. 3 as an example, AUVs takes reaching the target
devices as the highest priority goal at the cost of energy
before 300 epoches, as can be seen from the rising energy
consumption curve in Fig. 3(c). After this phase, AUVs
recalibrate their policies and turn their attention to improving
energy efficiency while continuing to improve the sum data
rate. In the subsequent training process, our algorithm can
still maintain a balance between the optimization objectives,
and this robustness is particularly significant when cumulative
reward fluctuations are observed.

The distance penalty term a in (3) affects AUV’s decision to
select target device. To evaluate the impact of a on algorithm
performance, we use the trained expert policy to evaluate
the relationship between a ∈ [0, 0.42] and three performance

indicators: 1) sum data rate; 2) total data throughput; and
3) average time of data overflow. To ensure accuracy, we
performed 40 Monte Carlo samples for each a value, and the
results are shown in Fig. 4. Fig. 4(a) and (c) show that a is
positively correlated with the data rate and the average time
of data overflow, which means that the sum data rate increases
with the increase of a. At the same time, when a increases,
AUV prefers to serve the nearest devices, which indirectly
leads to the increase of the average time of data overflow.
In addition, Fig. 4(b) and (c) reveal that when a < 0.2, the
total data throughput is positively correlated with a while the
average time of data overflow remains relatively stable. When
a > 0.2, the two indicators deteriorate rapidly. In order to
achieve a tradeoff between multiple optimization objectives,
we set a to 0.2.

We use the trained expert policies to guide AUVs to perform
600s data collection tasks in TFE and TE, respectively. The
motion trajectories of AUVs in the two scenarios are shown
in Figs. 5 and 6, respectively.

As can be seen from the trajectories of AUVs in Fig. 5,
each AUV plans its data collection trajectory by evaluating
the distance and the device’s upload urgency. For devices with
low-data generation rate, their data upload urgency is low,
and so the AUV will preferentially visit the devices closer to
itself to serve as many devices as possible, which can be seen
from the dense hover points in the figure. For devices with
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Fig. 4. Change of performance indicators versus α: (a) sum data rate; (b) total data throughput; and (c) average data overflow times.

Fig. 5. Trajectories of AUVs for the data collection task in the TFE.

Fig. 6. Trajectories of AUVs for the data collection task in the TE.

high-data upload urgency, each AUV will choose the optimal
path to ensure that these devices’ data can be collected in
a timely manner. The figure shows that devices with high-
data generation rate are accessed, which confirms our analysis.
In addition, since our proposed MAISAC algorithm carries
out the environment-aware trajectory design, AUVs can be
competent for the data collection task in TE as shown in
Fig. 6. When conducting data collection tasks in TEs, AUVs
optimize their trajectories to avoid dangerous vortex areas due
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Fig. 7. Average data overflow times versus the site size and the number of
AUVs.
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Fig. 8. Average data overflow times versus the number of devices and AUVs.

to higher water velocity around vortices, which increases the
energy consumption of AUVs. The above analysis proves that
our proposed MAISAC not only has high-data collection effi-
ciency, but also has the ability of environment-aware trajectory
design, and has excellent performance and adaptability.

Subsequently, in order to evaluate the timeliness of data
collection of our proposed scheme under different task sce-
narios, the changes of the average data overflow times with
the site size and the number of devices are shown in Figs. 7
and 8, respectively. On the one hand, the average data overflow
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Fig. 9. Profit versus the number of AUVs and the communication radius.

times increases with the size of the site, as shown in Fig. 7.
As the average distance between devices increases, AUVs
cannot timely respond to the upload requirements of the
target devices. When the number of AUVs increases, the data
overflow phenomenon is effectively alleviated. In particular,
the collaboration of four AUVs to collect data can ensure
that no data overflow occurs when the site side length is less
than 160 m. On the other hand, the average data overflow
times increases with the increase of devices, as shown in
Fig. 8. The reason is that the number of devices that generate
upload demands at the same time is increasing, and the ability
of AUVs to handle devices at the same time is limited.
When the number of participating AUVs gradually increases,
this phenomenon can be significantly improved. For example,
when the number of devices is 120, the data overflow time
of four AUVs is reduced from about 19 to 7 times compared
with that of a single AUV. Based on the above analysis, it
can be concluded that multi-AUV collaboration can effectively
improve the timeliness of data collection and be competent for
complex tasks.

According to (38a), the higher the total data collection rate,
the larger the total data collection volume, and the smaller
the total energy consumption, the greater the profit. Fig. 9
shows the profits of different numbers of AUVs in different
communication ranges. It can be concluded that with constant
communication coverage radius, the more AUVs, the greater
the profits. This is because the system’s ability to respond
to multiple tasks at the same time becomes stronger, and
AUVs can choose the optimal target device to collect data.
In the case of the same number of AUVs, the larger the
communication coverage radius, the greater the profit, because
as the communication radius increases, the AUV can improve
the data collection rate and reduce energy consumption by
optimizing the hovering point.

To further highlight the advantages of MAISAC proposed in
this article, we compare the total profit obtained by MAISAC-
based optimization scheme with that obtained by DDPG-based
optimization scheme in TE and TFE, respectively, and the
results are shown in Fig. 10. It can be seen that the profits
obtained by the two algorithms in the TE are, respectively,
smaller than those in the TFE, which is in line with the
actual situation. The TE increases the energy consumption
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of AUV, interferes with the motion of AUV, increases the
instability of the environment, reduces the learning efficiency
of reinforcement learning to a certain extent, and ultimately
results in the decline of profits. In addition, it can be found
that the performance of the proposed MAISAC algorithm is
better than that of the DDPG algorithm in any environment,
and the error is smaller.

In reinforcement learning, the setting of key hyperparame-
ters, such as learning rate, is very important, which seriously
affects the performance of the algorithm. Considering that
MAISAC deals with dynamic environments with multiple
AUVs, we optimize the learning rate. Generally speaking,
too high a learning rate leads to instability of the model
and even gradient explosion or gradient disappearance. On
the contrary, network parameters are updated slowly and
convergence is slow. In Fig. 11, we compare the performance
of algorithms using adaptive learning rate and several fixed
learning rates. It can be seen that MAISAC using adaptive
learning rate will gradually adjust the learning rate according
to the training process, so as to achieve a higher level of
convergence.
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VI. CONCLUSION

In this article, an environment- and energy aware multi-
AUV assisted IoUT data collection scheme is proposed, aiming
at efficient data collection of IoUT devices with different states
in TE. This problem is a multiobjective optimization problem,
that is, for IoUT devices, their data must be collected in time
to prevent overflow, and for AUVs, they must plan reasonable
paths to avoid the vortex areas and reduce energy consumption,
and ultimately make the system the most profitable. For this
high-dimensional NP-hard problem, we formulate constrained
optimization problem and propose a MAISAC algorithm to
train each AUV to make the best decision based on DTDE.
The simulation results show that the proposed scheme can
complete the data collection task well both in turbulence-free
and TEs, and can also take into account the timeliness of
data collection, the sum data collection rate, the total data
throughput, AUV energy consumption and operation safety
when the task conditions become complicated. In addition, our
proposed MAISAC algorithm has high adaptability.

In the near future, we plan to investigate the data collection
task in large-scale IoUT. A limited number of AUVs may not
respond timely to the data upload requests from numerous sen-
sor nodes. Therefore, it is beneficial to explore the hierarchical
data collection mechanism, this involves initially clustering
the nodes and having each cluster head collect data within its
cluster, followed by the AUVs collecting data from the cluster
heads. Moreover, it is essential to study the simultaneous
wireless data and power transfer, allowing AUVs to collect
data while simultaneously charging nodes with low-battery
levels to extend the lifespan of the data collection system.
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