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Abstract— The adaptivity and maneuvering capabilities of
Autonomous Underwater Vehicles (AUVs) have drawn signif-
icant attention in oceanic research, due to the unpredictable
disturbances and strong coupling among the AUV’s degrees
of freedom. In this paper, we developed large language model
(LLM)-enhanced reinforcement learning (RL)-based adaptive
S-surface controller for AUVs. Specifically, LLMs are in-
troduced for the joint optimization of controller parameters
and reward functions in RL training. Using multi-modal and
structured explicit task feedback, LLMs enable joint adjust-
ments, balance multiple objectives, and enhance task-oriented
performance and adaptability. In the proposed controller, the
RL policy focuses on upper-level tasks, outputting task-oriented
high-level commands that the S-surface controller then converts
into control signals, ensuring cancellation of nonlinear effects
and unpredictable external disturbances in extreme sea condi-
tions. Under extreme sea conditions involving complex terrain,
waves, and currents, the proposed controller demonstrates su-
perior performance and adaptability in high-level tasks such as
underwater target tracking and data collection, outperforming
traditional PID and SMC controllers. 3

I. INTRODUCTION

The adaptive control and maneuvering capabilities of

Autonomous Underwater Vehicles (AUVs) have drawn sig-

nificant attention in oceanic research due to their substantial

potential in maritime applications, including underwater re-

source exploration [1], shipwreck search [2], and underwater

structure maintenance [3]. These capabilities contribute sig-

nificantly to marine science and the economy [4], but require

advanced control systems that provide task-adaptive and

precise control of AUVs’ position and attitude, particularly

under extreme sea conditions [5]. However, achieving precise

maneuvering control of AUVs is challenging due to their

highly nonlinear dynamics [6], time-varying hydrodynamics,

strong six-degree-of-freedom coupling, and environmental

uncertainties [7]. During ocean navigation, AUVs encounter

unpredictable external disturbances [8], requiring continu-

ous high-precision trajectory tracking and obstacle avoid-

ance during tasks such as coral reef ecosystem monitoring

[9], which necessitates balancing multiple objectives [10].
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Fig. 1: Illustration of an AUV conducting underwater tasks
using the proposed controller. The proposed controller utilizes an
RL-based S-surface controller to enable effective control. LLMs
assist the controller by optimizing the reward functions for RL
training and tuning the parameters of the S-surface controller.

Additionally, position uncertainties caused by extreme sea

conditions [11] require additional control compensation.

Researchers have developed various control methodologies

for AUVs, including PID controllers, sliding mode control

(SMC) [12], fuzzy control [13], and model predictive control

(MPC) [14]. While these methods demonstrate advantages

in most scenarios, they exhibit limited adaptability in ex-

treme conditions. Specifically, PID controllers require time-

consuming parameter tuning for complex environments [15].

Fuzzy controllers provide good stability but are limited by

the complexity of defining membership functions, inference

methods, and fuzzy rules [13]. MPC predicts future behavior

for optimized control but heavily relies on real-time compu-

tation and accurate system models, reducing its robustness

in extreme conditions [14].

The S-Surface controller has shown promise in handling

uncertainties and nonlinearities, which leverages a sigmoid

plane-like surface to control AUVs’ dynamic systems to-

wards desired states [16]. However, it lacks the flexibility to

adaptively adjust parameters and control strategies to handle

the strong coupling between degrees of freedom [17]. The

emergence of Reinforcement Learning (RL) has somehow

addressed these issues. By training robots to learn adaptive

control strategies through environmental interactions, RL has

shown promising results in various applications including

drone control [18], legged robot navigation [19], and other

autonomous systems [20]. Although RL faces challenges

like reward function design, its strong learning ability en-

ables AUVs to develop expert-level control strategies that



autonomously map high-level 6-DoF commands to end-to-

end control signals, including thruster commands [7]. Also,

with the assistance of the Large Language Model (LLM),

AUVs can adaptively adjust controller’s parameters while op-

timizing RL reward functions [21], enhancing AUVs’ ability

to balance multi-objective optimization and improve task-

oriented control and maneuvering capabilities in extreme

marine environments [7], [14].

Based on above analysis, we develop an LLM-enhanced

RL-based adaptive S-surface controller for AUVs to effec-

tively execute high-level tasks in extreme sea conditions. The

contributions of this paper mainly include three parts:

• We develop a novel AUV controller that employs RL to

train an expert-level control strategy for high-level task

execution and control command generation, while the

S-surface controller produces control signals, ensuring

cancellation of nonlinear effects and external distur-

bances under extreme sea conditions.

• We utilize LLMs for joint optimization of RL reward

function and controller parameters, utilizing multimodal

task execution logs and combining contextual informa-

tion such as environmental descriptions to enhance the

final task performance and adaptability.

• The proposed controller demonstrates superior robust-

ness and flexibility compared to conventional PID and

SMC controllers in challenging marine conditions char-

acterized by waves, currents, and complex terrain. It

exhibits exceptional performance in advanced 3D tasks,

including underwater target tracking and data collection

tasks.

II. RELATED WORK

A. S-Surface Controller for AUV Control

S-Surface controller and its variants leverage the prin-

ciples of smooth surfaces and dynamic control, signifi-

cantly enhancing AUV maneuverability and environmental

disturbance responsiveness. Li et al. [6] implemented the

controller on MOOS-IvP, demonstrating robust lake test

results despite buoyancy variations. Lakhekar et al. [8]

combined disturbance-observer-based control with fuzzy-

adaptive S-Surface control for trajectory tracking, effectively

compensating for disturbances without prior knowledge of

uncertainty bounds. Jiang et al. [22] enhanced the S-Surface

controller with a sliding mode variable structure to handle

static load and high-speed motion, with stability confirmed

by Lyapunov analysis.

B. Reinforcement Learning for Control

RL methods demonstrate promising results in controlling

complex robotic systems, especially in challenging environ-

ments. Meger et al. [23] employed an RL-based approach to

control a flipper-based underwater vehicle, using a Gaussian

process model to predict state distributions. Hadi et al. [24]

investigated RL for learning 2-DoF control (yaw, speed) in

a simulator. Lu et al. [25] applied domain randomization to

enhance RL-based control for a 4-DoF AUV. Notably, RL is

often applicable to various settings without requiring in-situ

tuning [26].

C. Large Language Model for Multi-Objective Optimization

LLMs excel in multi-objective optimization, serving as

high-level semantic planners for robotic tasks [27], learn-

ing complex manipulation tasks, and generating structured

outputs for sequential decision-making [28]. Ma et al. [29]

showed that LLM-generated rewards outperformed human-

engineered ones across various robotic tasks. Xie et al. [30]

utilized LLMs for creating interpretable, dense reward codes,

enabling iterative refinement for multi-objective tasks with

human feedback. Zarzà et al. [31] used GPT-3.5-turbo for

instantaneous PID system updates, highlighting its network

control potential. Guo et al. [32] leveraged LLMs to encode

expert knowledge, emulating human-like gradual tuning of

controller parameters to meet stability requirements.

III. CONTROLLER DESIGN

In this section, we detail our proposed controller, de-

scribing its overall design architecture and explaining the

workflow and principles of its three main modules.

A. Structure of the Proposed Controller

Fig. 2 illustrates the overall design of our controller. To

fully leverage the advantages of the LLM-enhanced RL-

based S-Surface controller, while achieving simulation and

perception of extreme marine conditions to evaluate the dis-

turbance rejection performance, we decompose the proposed

framework into three core modules. Specifically, the RL-
based S-Surface Controller Module employs RL policies

focusing on high-level task decision-making, and the S-

Surface controller utilized to achieve precise 6-DoF control.

The LLM-enhanced Iterative Joint Optimization Module
performs joint optimization of the RL reward function and

controller parameters guided by domain-specific guidelines.

It systematically analyzes environmental summaries, numeri-

cal computations, and multi-modal task feedback to enhance

adaptation to dynamic marine environments. The Simulation
and Environment-Aware Module executes physical ocean

modeling with 6-DoF control dynamics for extreme scenario

simulation, and fuses multisource sensor data for active

disturbance mitigation.

B. RL-based S-Surface Controller Module

Through RL training, we aim to learn expert-level control

policies optimized for end-to-end performance in control-

constrained systems. The policies should demonstrate dis-

turbance rejection capabilities and generate optimal reference

signals for subordinate S-Surface controllers to enable AUVs

to accomplish high-level tasks.

Markov decision process modeling: We define the RL

training process using a Markov decision process (MDP)

with control-affine dynamics, represented as the tuple M �
( X ,A,U , C, f, g, d,Rπ, γ ). Here, X ⊆ R

n represents the

state space, A ⊆ R
a denotes the action space, while U ⊆ R

m
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Fig. 2: The overall framework of our proposed controller, which comprises three modules: (A) RL-based S-Surface Controller Module.
(B) LLM-Enhanced Iterative Joint Optimization Module. (C) Environment-Aware and Simulation Module.

denotes the control signal space. The state transitions in the

MDP follow the control-affine system:

xt+1 = f (xt) + g (xt)C(at) + d (xt) , (1)

where xt ∈ X represents the state at time step t. The

high-level action signal is sampled from the distribution

π(at|xt) according to a RL control policy π, and the control

signal ut = C(xt, at) is generated by the controller C :
X × A → U . The functions f : Rn → R

n and g : Rn →
R

n×m characterize the known nominal model of the system.

Additionally, d : Rn → R
n represents the unknown model

component, such as environmental disturbances like ocean

waves, which is continuous with respect to the state. The

variable Rπ denotes the reward functions, and γ ∈ [0, 1] is

the discount factor.

According to Eq. (1), the transition probability

is represented as P (xt+1 |xt, at). The closed-loop

transition probability under policy π is expressed as

Pπ (xt+1|xt) �
∫
U π ( at | xt )P ( xt+1 | xt, at ) dat.

Furthermore, the closed-loop state distribution at time

step t is denoted by υ(xt|ρ, π, t). This distribution

can be computed iteratively using the following formula

υ (xt+1|ρ, π, t+ 1) =
∫
X Pπ(xt+1|xt)υ(xt|ρ, π, t)dxt,

∀t ∈ N, with the initial condition υ(x0|ρ, π, 0) = ρ, which

represents the initial state distribution.

Observations, actions, and rewards: Similar to [7], we

implement a three-layer multilayer perceptron (MLP) policy,

which processes an observation vector comprising both task-

independent and task-relative components:

�o = {�poff, �vcur, hd, qt, �ωt, �oobs, �otask} , (2)

where �poff denotes the positional offset between the target

position and the AUV’s current location, �vcur represents the

water velocity, hd indicates the water depth, qt specifies

the orientation quaternion, and �ωt represents the measured

angular velocities. All positional variables are defined in the

AUV’s body-fixed coordinate system to ensure goal-oriented

control. Additionally, �oobs facilitate obstacle avoidance, while

�otask represents task-specific observations (e.g. positions for

other AUVs, for multi-AUV tasks).



For high-level decision-making, the policy generates ref-

erence control signals:

�a = [θt, ψ̇t, nt], (3)

where θt denotes the target pitch angle, ψ̇t represents the

target yaw rate, and nt specifies the target rotational speed of

thrusters for velocity control. These reference signals enable

direct comparison with observations, providing actionable

inputs for S-Surface controllers.

The reward function provides performance feedback for

policy optimization. To facilitate subsequent LLM-based

adaptation, the study defines a weighted reward structure:

Rπ = λTR =

p∑
i=1

λiRi, (4)

where R = {R1, R2, . . . , Rp} represents distinct objectives

(e.g., positional accuracy, orientation control, and energy

efficiency), and λ = {λ1, λ2, . . . , λp} denotes their corre-

sponding weights.

S-Surface Controller: The RL policy generates adaptive

reference signals, requiring precise tracking by S-Surface

controllers. Each S-Surface controller computes the control

signal ut based on the error e and its derivative ė between

the reference and actual states:

ut =
2

1 + exp(−ζ1e− ζ2ė)
− 1 + Δu︸︷︷︸

disturbances

, (5)

where ζ1 and ζ2 are positive constants that serve as surface

coefficients. The term Δu accounts for environmental dis-

turbances identified by the environment-aware module. The

S-Surface’s nonlinear exponential component ensures finite-

time convergence and provides a smooth control signal.

C. LLM-enhanced Iterative Joint Optimization Module

For RL-driven control systems to achieve effective per-

formance, both the controller and the reward function must

provide explicit performance feedback [21], [32], as their

coupled relationship presents significant tuning challenges.

To address this, we propose a joint optimization of the

reward function and controller parameters. The optimization

objective is formulated as follows:

argmax
λ,ζ1,ζ2

lim
T→∞

Eπ

[
T∑

t=0

γtΥ(R (π,λ, ζ1,ζ2))

]
, (6)

where Υ : R
p → R is a utility function that maps

multi-dimensional rewards to a scalar value [33]. While the

scalarization process is not fixed and varies with user needs

across different scenarios and over time, we maximize Υ
indirectly through performance logs, hard safety constraints,

and task prioritization.

Module (B) of the Fig. 2 illustrates the LLM-Enhanced

Iterative Joint Optimization Module. Environmental speci-

fications and decomposed user requirements, such as per-

formance metrics and safety constraints, form the context.

RL training logs, including performance metrics, guide re-

ward adjustments, while signal tracking performance guides

controller adjustments. However, traditional controller tuning

metrics, such as settling time and phase margin, struggle

to handle RL-generated reference signals characterized by

high variability and noise. Therefore, we use visual signal

tracking results as inputs. The LLM analyzes tracking per-

formance across critical signal phases, such as steady-state

and transients, and diagnoses issues like overshoot, sluggish

response, or oscillations. Controller parameters, specifically

ζ1 and ζ2 for the S-surface controller, are adjusted based on

their physical interpretations.

To mitigate context overload in LLM reasoning, we imple-

ment a memory-augmented parameter tracking module using

separate visual LLMs. This submodule processes historical

parameter-performance correlations, generates comparative

summaries, and determines whether it is necessary to termi-

nate optimization if enough optimization or controller limits

are detected.

For efficient joint optimization, a bottleneck-driven syn-

chronization strategy is introduced: the system identifies

whether performance limitations stem from reward function

misalignment or controller inadequacy, then prioritizes ad-

justments to reward parameters (λ), controller parameters

(ζ1, ζ2), or both. And finally, the LLM generates formatted

output for parameter adjustment. Besides, the reward weights

will undergo preliminary tuning based on training feedback

under ideal environments (allowing the RL policy to directly

adjust the positions of the AUVs without control character-

istics), thereby speeding up the adjustment in the controll-

constraint scenarios.

D. Environment-Aware and Simulation Module

To achieve realistic 6-DoF simulation, we utilize the

Python Vehicle Simulator [34] based on Fossen’s motion

equations [35], which is capable of simulating real-world

hydrodynamic and hydrostatic forces, while providing high-

level control input interfaces.

To evaluate AUV disturbance rejection, we simulate ma-

rine environments including waves and currents. The fetch-

limited JONSWAP (Joint North Sea Wave Project) spectrum

is adopted to represent wave energy distribution [36]:

S(f) =
αg2

(2π)4f5
exp

(
−5

4

(
fp
f

)4
)
γ
exp

(
− (f−fp)2

2σ2f2
p

)
, (7)

where α denotes the energy scale parameter, fp represents

the peak frequency, γ is the peak enhancement factor, and σ
is the peak shape parameter, defined as σ = σa for f ≤ fp
and σ = σb for f > fp. The parameter values are listed in

Table I. Then, Wave surfaces are generated through linear

superposition[37]:

η(x, y, t) =
∑
i,j

aij cos(ϕij), (8)

ϕij = kijx cos θj + kijy sin θj − ωit+ φij , (9)

using directional spreading function D(θj) = cos2 θj and

phase offsets φij sampled from a Gaussian process. Com-

ponent amplitudes derive from aij =
√
2S(fi)D(θj)ΔfΔθ,



TABLE I: Key parameters of the experimental setup.

Parameters Values

JONSWAP parameters
0.01,0.1,3.3,0.07,0.09

α,fp,γ, σa, σb

AUV maximum speed vmax, ωmax 2.3m/s(4.5kts), 15deg/s(0.26rad/s)
Propeller maximum revolution 1525rpm

Water density ρ 1026kg/m3

Control frequency 20Hz

LLM model
GPT-4o (VLLM)

deepseek-V3 (Textual)
LLM parameters temperature=0.5, Top P=1

where Δf and Δθ represent frequency/directional resolu-

tions. The dispersion relation (2πf)2 = gk tanh(kh) de-

termines wave numbers kij . Horizontal wave-induced flows

follow Airy theory:

�v =

(
vx
vy

)
=
∑
i,j

aijωi
cosh [kij(z + h)]

sinh(kijh)
cos(ϕij)

(
cos θj
sin θj

)
,

(10)

where h denotes the water depth. Although vertical flow dis-

turbances are currently excluded, wave-induced coupling ef-

fects still pose challenges for 6-DoF control due to AUV mo-

tion dynamics. To address this, we design an Environment-
Aware Module. The AUVs are equipped with horizontal

acoustic Doppler current profilers (H-ADCPs) to measure

water velocities and active sonar systems for terrain and

obstacle detection to avoid collision. Additionally, unmanned

surface vehicles (USVs) are utilized to estimate AUV posi-

tions via ultra-short baseline (USBL) acoustic positioning

and facilitate inter-vehicle communication [38].

IV. EXPERIMENTS AND ANALYSIS

In the following, we first describe our simulation setup and

then evaluate and analyze the adaptability and performance

of our proposed LLM-enhanced RL-based adaptive S-surface

controller through comprehensive experiments.

A. Experiment Setup

We validate the effectiveness of our proposed controller

utilizing a REMUS 100 AUV (1.6 m in length, 31.9 kg in

weight) with a maximum disturbance-free velocity of 2.3

m/s. The terrain data are derived from the East China Sea

region (123°E–124°E, 28°N–29°N), and is post-processed

to reduce depth variations, with the deepest water reaching

60m. Additionally, we use the TD3 as our RL algorithm

with default settings [39]. Key experiment parameters and

configurations are summarized in Table 1.

Within this specific setup, we introduce two high-level

tasks, whose description is outlined as follows:

• 3D data collection task: Employing the proposed

controller, a single or multiple AUVs operate together to

search and collect data from sensor nodes (SNs) scattered

randomly. The main objectives contain conducting adaptive

control of AUVs to optimize data collection rates, reducing

energy consumption, and enhancing the capability to avoid

collisions. We refer further details on this task to [10].

Initial(ζ1=0.1, ζ2=1) 2nd Iteration (ζ1=2, ζ2=1)

3rd Iteration (ζ1=2, ζ2=2)

ζ1*=10

Termination

ζ1*=2 

ζ2*=2, λwaypoint*=2 

Fig. 3: Parameters for yaw tracking controller and reward weights,
along with 2D projections of AUV trajectories from the 3D data
collection tasks during the LLM optimization phase.

Fig. 4: Comparative results of the S-surface controller in tracking
reference signals taken from a target tracking task during the LLM
optimization phase.

• 3D target tracking task: A single or multiple AUVs are

utilized to follow a dynamic underwater target whose posi-

tion is unpredictable. Other task objectives include avoiding

collisions with hazardous terrain and obstacles, maintaining

a reasonable water depth, and maintaining communication

between AUVs (if applicable). We refer more details to [40].

B. Experimental Results

To evaluate the joint optimization of the LLMs, we per-

form parameter adjustments that the controller parameters are

previously set to under-regulation configurations. The results

of 3D data collection tasks executed during optimization are

illustrated in Fig. 3. For comparative analysis, we also utilize

the S-Surface controller to track fixed reference control sig-

nals obtained from a target tracking task during optimization,

with the comparative tracking performance shown in Fig. 4.



(a) ES condition (b) VES condition

Fig. 5: Comparative results of three controllers tracking reference
signals taken from a target tracking task under ES and VES
conditions.

For yaw control, a low ζ1 parameter value results in a

significantly slow response. Consequently, the LLM substan-

tially increases ζ1 during the first iteration. In the second

iteration, while continuing to increase ζ1, the adjustment

magnitude is reduced due to improved tracking performance.

By the third iteration, residual inadequate regulation in

yaw control persists when the reference signal shows rapid

change, indicating system steering limitations. The LLM

responds by increasing ζ2 before terminating the iteration

to enhance stability. Concurrently, it enhances the reward

weight for waypoint tracking, as the AUV struggles with

flexible and accurate waypoint tracking in practical tasks. For

depth control, high-frequency oscillation prompts the LLM

to reduce ζ1 while increasing ζ2 before termination.

Also, We conduct comparative experiments between the

LLM-optimized S-Surface controller and baseline con-

trollers, with their parameters also been optimized by the

LLM process mentioned before, including:

• PID: Conventional PID controllers for separate yaw and

depth control.

• Original control implementation from Python Vehicle

Simulator (denoted as PVS): The PVS employed a SMC

controller with reference model compensation for yaw

control and a PI controller for depth control.

These controllers are evaluated under two disturbance

conditions: the extreme sea condition (ES) with a maximum

water velocity of 2 m/s, and the very extreme sea condition

(VES) with doubled water velocities (maximum 4 m/s),

exceeding the AUV’s maximum propulsion capability and

requiring advanced compensation strategies.

Comparative results illustrated in Fig. 5 demonstrate the S-

Surface controller’s superior adaptability under disturbances.

Specifically, both the PID and S-Surface controllers achieve

stable reference tracking under ES conditions, while the PVS

exhibits delayed yaw control response due to the inherent

phase lag of its SMC controller with reference model ar-

chitecture, along with significant depth overshoot from its

TABLE II: Performance metrics of different control methods eval-
uated during the data collection task under ES and VES conditions.

Metrics SSN ↑ EC (W) ↓ DT (s) ↓
Ideal 15.7 ± 6.4 163.8 ± 32.0 0.0 ± 0.0

S-Surface ES 14.0 ± 8.7 202.9 ± 38.5 0.0 ± 0.0
VES 10.7 ± 7.0 227.2 ± 44.5 34.4 ± 20.7

PID ES 13.8 ± 9.0 194.8 ± 41.9 0.0 ± 0.0
VES 9.2 ± 6.1 231.3 ± 46.8 53.7 ± 23.3

PVS ES 12.3 ± 8.4 205.1 ± 35.2 203.0 ± 98.8
VES 6.5 ± 5.4 247.1 ± 56.3 517.8 ± 157.9

(a) 3D Data collection task (b) 3D target tracking task

Fig. 6: 3D visualizations of multiple AUVs performing data
collection and target tracking tasks using the proposed RL-based
S-surface controller.

basic PI controller. When transitioning to VES conditions,

the controllers exhibit progressive performance deterioration,

with the PID controller showing worse flexibility and stabil-

ity compared to the S-Surface controller. Additionally, the

PVS suffers a complete loss of depth regulation capability.

Then, we utilize the controllers above to conduct 3D data

collection task to evaluate the task-specific performance.

We introduce three metrics: the total number of served

sensor nodes (SSN, quantifying yaw control capability),

energy consumption (EC, measuring actuation efficiency,

calculated using equations from [41]), and danger time

(DT, representing the cumulative duration of unsafe seafloor

proximity below 10 m, quantifying depth control capability).

An idealized control setting (Ideal) is additionally intro-

duced, which removes hydrodynamic limitations and the RL

policy can directly change the AUVs’ positions. The results

are presented in Table II. Under the ES condition, the S-

Surface controller achieves performance close to the ideal

setting, while the PVS exhibits significantly longer danger

time due to poor depth control. Under the VES condition,

the PID controller exhibits significantly greater performance

degradation compared to the S-Surface controller, while the

PVS experiences serious control failure.

Finally, Fig. 6 visualizes the 3D data collection and target

tracking tasks performed by two AUVs utilizing S-Surface

control. In the former case, the AUV must judiciously

control its direction to efficiently serve sensor nodes due

to its restricted tuning capability, while the latter requires

more real-time control capabilities. Thanks to the powerful

optimization capability of RL and the flexible execution of



the controller, the AUVs can plan optimal routes as much

as possible, achieving performance close to ideal control

conditions. In the latter case, the AUVs also demonstrate

high maneuverability in response to target turns.

V. CONCLUSIONS

In this study, we develop an LLM-enhanced RL-based

adaptive S-surface controller for AUVs under extreme sea

conditions. This controller utilizes LLMs to iteratively opti-

mize controller parameters and reward functions, while lever-

aging RL to train the AUV to acquire an expert-level control

strategy. The strategy autonomously generates control com-

mands for S-surface controllers in high-level tasks, which

further convert them into low-level control signals. Compre-

hensive simulation experiments on representative high-level

tasks demonstrate the superior performance and adaptability

of the proposed controller, which outperforms PID and SMC

controllers under extreme sea conditions. Future work will

focus on implementing the proposed controller on AUVs and

conducting field experiments to realize the sim2real process,

aiming to minimize the gap between simulation and reality.
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